THE DIMENSIONS OF KNOTTED POLYGONS

被引:52
作者
VANRENSBURG, EJJ [1 ]
WHITTINGTON, SG [1 ]
机构
[1] UNIV TORONTO,DEPT CHEM,TORONTO M5S 1A1,ONTARIO,CANADA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 16期
关键词
D O I
10.1088/0305-4470/24/16/028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dimensions (mean-square radius of gyration and mean span) of self-avoiding polygons on the simple cubic lattice with fixed knot type. The approach used is a Monte Carlo algorithm which is a combination of the BFACF algorithm and the pivot algorithm, so that the polygons are studied in the grand canonical ensemble, but the autocorrelation time is not too large. We show that, although the dimensions of polygons are sensitive to knot type, the critical exponent (nu) and the leading amplitude are independent of the knot type of the polygon. The knot type influences the confluent correction to scaling term and hence the rate of approach to the limiting behaviour.
引用
收藏
页码:3935 / 3948
页数:14
相关论文
共 29 条
[1]   RANDOM-PATHS AND RANDOM SURFACES ON A DIGITAL-COMPUTER [J].
BERG, B ;
FOERSTER, D .
PHYSICS LETTERS B, 1981, 106 (04) :323-326
[2]  
BROWER R, 1991, UNPUB
[3]  
Burde G., 1985, KNOTS
[4]   NONLOCAL MONTE-CARLO ALGORITHM FOR SELF-AVOIDING WALKS WITH FIXED END-POINTS [J].
CARACCIOLO, S ;
PELISSETTO, A ;
SOKAL, AD .
JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (1-2) :1-53
[5]   POLYMERS AND G-ABSOLUTE-VALUE-PHI-4 THEORY IN FOUR DIMENSIONS [J].
DECARVALHO, CA ;
CARACCIOLO, S ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1983, 215 (02) :209-248
[6]   A NEW MONTE-CARLO APPROACH TO THE CRITICAL PROPERTIES OF SELF-AVOIDING RANDOM-WALKS [J].
DECARVALHO, CA ;
CARACCIOLO, S .
JOURNAL DE PHYSIQUE, 1983, 44 (03) :323-331
[7]   TIGHT KNOTS [J].
DEGENNES, PG .
MACROMOLECULES, 1984, 17 (04) :703-704
[8]   SELF-AVOIDING RANDOM LOOPS [J].
DUBINS, LE ;
ORLITSKY, A ;
REEDS, JA ;
SHEPP, LA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (06) :1509-1516
[9]   STATISTICAL-MECHANICS AND TOPOLOGY OF POLYMER-CHAINS [J].
FRANKKAMENETSKII, MD ;
LUKASHIN, AV ;
VOLOGODSKII, AV .
NATURE, 1975, 258 (5534) :398-402
[10]   ON THE CRITICAL-BEHAVIOR OF SELF-AVOIDING WALKS .2. [J].
GUTTMANN, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14) :2807-2813