NONNORMAL DEL PEZZO SURFACES

被引:67
作者
REID, M [1 ]
机构
[1] UNIV WARWICK,INST MATH,COVENTRY CV4 7AL,W MIDLANDS,ENGLAND
关键词
D O I
10.2977/prims/1195165581
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies reduced, connected, Gorenstein surfaces with ample-k assumed to be reducible or nonnormal. The normalisation is a union of one or more standard surfaces (scrolls and Veronese surfaces), marked with a conic as double locus. The question is how to glue these together to get a Gorenstein scheme. In characteristic 0, the results amount to a classification of projective surfaces in the style of the 1880s. However, the methods involve a study of the dualising sheaf of a nonnormal variety in terms of Rosenlicht differentials, and there is a subtle pathology in characteristic p due to Mori and S. Goto.
引用
收藏
页码:695 / 727
页数:33
相关论文
共 18 条
[1]  
ALTMAN A, LNM, V146
[2]  
ARTIN M, 1970, ANN MATH, V91, P88, DOI 10.2307/1970602
[3]  
Bourbaki, ALGEBRE COMMUTATIVE
[4]  
del Pezzo P., 1887, RENDICONTI CIRCOLO M, V1, P241, DOI 10.1007/BF03020097
[5]  
DELPEZZO P, 1885, SEP REND R ACC SCI F
[6]  
Enriques F., 1949, SUPERFICIE ALGEBRICH
[7]   COMPLEX SUBSPACES AND HOLOMORPHIC VECTOR-SPACE BUNDLES OF RANK 2 [J].
GRAUERT, H ;
SCHNEIDER, M .
MATHEMATISCHE ANNALEN, 1977, 230 (01) :75-90
[8]  
GROTHENDIECK A, 1968, MODULES FONCTEURS DU
[9]  
GROTHENDIECK A, LNM, V41
[10]  
Hartshorne R, ALGEBRAIC GEOMETRY