AN ALGEBRAIC APPROACH TO SOLVING EVOLUTION PROBLEMS IN SOME NONLINEAR QUANTUM MODELS

被引:42
作者
KARASSIOV, VP [1 ]
KLIMOV, AB [1 ]
机构
[1] PN LEBEDEV PHYS INST,MOSCOW 117924,RUSSIA
关键词
D O I
10.1016/0375-9601(94)90816-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new general Lie-algebraic approach is proposed to solve evolution problems in some nonlinear models of quantum physics with polynomially deformed Lie algebras su(pd)(2) as their dynamic symmetry algebras. The method makes use of an expansion of the evolution operators by power series in the su(pd)(2) shift operators and a (recursive) reduction of finding coefficient functions to solve auxiliary exactly solvable su(2) problems with quadratic Hamiltonians.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 30 条
[1]  
ANDRIANOV AA, 1992, PHYS LETT A, V174, P273
[2]   A UNITARY REPRESENTATION OF SL(2,R) [J].
BACRY, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (09) :2061-2077
[3]  
Barut AO., 1977, THEORY GROUP REPRESE
[4]  
Bateman H., 1953, HIGHER TRANSCENDENTA, VI-III
[5]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[6]   UNIFICATION OF JAYNES-CUMMINGS MODELS [J].
BONATSOS, D ;
DASKALOYANNIS, C ;
LALAZISSIS, GA .
PHYSICAL REVIEW A, 1993, 47 (04) :3448-3451
[7]  
DOEBNER HD, 1993, QUANTUM SYMMETRIES, P124
[8]   DYNAMIC SYMMETRY OF ANISOTROPIC SINGULAR OSCILLATOR [J].
GALBERT, OF ;
GRANOVSKII, YI ;
ZHEDANOV, AS .
PHYSICS LETTERS A, 1991, 153 (4-5) :177-180
[9]  
GRUBER B, 1991, SYMMETRIES SCI
[10]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69