(P,Q) STRING ACTIONS

被引:61
作者
GINSPARG, P [1 ]
GOULIAN, M [1 ]
PLESSER, MR [1 ]
ZINNJUSTIN, J [1 ]
机构
[1] CEA,SERV PHYS THEOR,INST RECH FONDAMENTALE LAB,F-91191 GIF SUR YVETTE,FRANCE
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(90)90326-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate a recently proposed nonperturbative formulation of two-dimensional quantum gravity coupled to (p,q) minimal conformal matter. The coupled differential equations for the partition function summed over topologies are shown to follow from an action principle. The basic action for a (p,q) model takes the general form S(p,q) = ∫Res[Qp/q+ 1 + Σk = 0Σα = 0 q - 2t(k), αQk + (α + 1)/q], where Q is a qth-order differential operator and the t(k), α are sources for operator insertions. We illustrate our results with the explicit examples of the Ising (4,3) and tricritical Ising (5,4) models. The action S(p,q) embodies the essential features of the problem (including the relation to generalized KdV hierarchies) in a most compact form. © 1990.
引用
收藏
页码:539 / 563
页数:25
相关论文
共 36 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[3]  
[Anonymous], PUBL I HAUTES ETUDES
[4]   MICROSCOPIC AND MACROSCOPIC LOOPS IN NONPERTURBATIVE 2-DIMENSIONAL GRAVITY [J].
BANKS, T ;
DOUGLAS, MR ;
SEIBERG, N ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 238 (2-4) :279-286
[5]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[6]  
Bessis D., 1980, ADV APPL MATH, V1, P109, DOI 10.1016/0196-8858(80)90008-1
[7]   ANALYTICAL AND NUMERICAL STUDY OF A MODEL OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA ;
KOSTOV, IK ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1986, 275 (04) :641-686
[8]   THE ISING-MODEL ON A RANDOM PLANAR LATTICE - THE STRUCTURE OF THE PHASE-TRANSITION AND THE EXACT CRITICAL EXPONENTS [J].
BOULATOV, DV ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1987, 186 (3-4) :379-384
[9]   POSSIBLE TYPES OF CRITICAL-BEHAVIOR AND THE MEAN SIZE OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA ;
KOSTOV, IK ;
MIGDAL, AA .
PHYSICS LETTERS B, 1986, 174 (01) :87-93
[10]   THE ISING-MODEL COUPLED TO 2D GRAVITY - A NONPERTURBATIVE ANALYSIS [J].
BREZIN, E ;
DOUGLAS, MR ;
KAZAKOV, V ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 237 (01) :43-46