IRREDUCIBLE INVARIANTS OF A TENSOR OF RANK-4

被引:17
作者
BETTEN, J
HELISCH, W
机构
[1] Lehr‐ und Forschungsgebiet Mathematische Modelle in der Werkstoffkunde, RWTH Aachen, Aachen
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1992年 / 72卷 / 01期
关键词
D O I
10.1002/zamm.19920720108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following Hilbert's theorem each tensor possesses a basis of integrity, i.e. a bounded number of invariants such that an arbitrary invariant can be represented as a polynomial function of the elements of this basis of integrity. Contrary to the case of tensors of rank two such a basis of integrity for tensors of rank our up to now is unknown. As preliminary stage for the determination of such a basis in the present paper systems of irreducible invariants for tensors of rank four are represented in two- and three-dimensional euclidean spaces.
引用
收藏
页码:45 / 57
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 1910, LEHRBUCH KRISTALLPHY
[2]  
Betten J, 1987, TENSORRECHNUNG INGEN
[3]  
Betten J., 1982, INT J MATH SCI, V5, P87
[4]  
GRACE JH, 1903, ALGEBRA INVARIANTS
[5]  
GUREVICH GB, 1964, F THEORY ALGEBRAIC I
[6]  
Schur I., 1968, GRUNDLEHREN MATH WIS, V143
[7]  
SPENCER AJM, 1971, CONTINUUM PHYSICS, V1, P261
[8]  
TRUESDELL CA, 1965, HDB PHYSIK, V3
[9]  
WEIZENBOCK R, 1923, INVARIANTENTHEORIE
[10]  
Weyl H., 1946, CLASSICAL GROUPS