A COMPUTER PROOF THAT THE LORENZ EQUATIONS HAVE CHAOTIC SOLUTIONS

被引:32
作者
HASSARD, B
ZHANG, J
HASTINGS, SP
TROY, WC
机构
[1] SUNY BUFFALO,BUFFALO,NY 14214
[2] UNIV PITTSBURGH,PITTSBURGH,PA 15260
基金
美国国家科学基金会;
关键词
D O I
10.1016/0893-9659(94)90058-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a computerized proof, using methods of interval arithmetic and recent results of the authors, that the Lorenz equations support a form of chaos. We need to integrate fewer than 550 solutions of the equations numerically, compared with 700,000 for another recent result of this type.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 11 条
[1]  
ABERTH O, 1988, PRECISE NUMERICAL AN
[2]  
HASSARD BD, IN PRESS SIAM J MATH
[3]  
HASTINGS S, 1987, J DIFF EQUATIONS
[4]  
HASTINGS S, 1993, AM MATH MONTHLY
[5]  
HASTINGS S, 1991, J NONLINEAR SCI
[6]   A SHOOTING APPROACH TO THE LORENZ EQUATIONS [J].
HASTINGS, SP ;
TROY, WC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (02) :298-303
[7]  
HASTINGS SP, IN PRESS J DIFF EQUA
[8]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[9]  
2
[10]  
LORENZ EN, 1979, LECTURE NOTES MATH