Transferrins are two-domain proteins with a very strong site for iron binding located in each domain. Using ultrasensitive titration calorimetry, the binding of ferric ion (chelated with a 2-fold molar excess of nitrilotriacetate) to the two sites of ovotransferrin was studied in detail as well as the binding to the single site in the N- and C-terminal half-molecules. In the presence of excess bicarbonate ion, the binding occurs in two kinetic steps. The fast process of contact binding is instantaneous with respect to instrument response time, is strongly exothermic for the N site and less so for the C site, and corresponds to binding of the chelated ferric ion. The slower process of bicarbonate insertion with concomitant release of nitrilotriacetate occurs on a time scale of 2-20 min over the temperature range 7-37-degrees-C and is endothermic for the N site and exothermic for the C site, with rates being significantly slower for insertion at the C site. The DELTA-H of binding is strongly temperature-dependent for both sites, arising from a large negative DELTA-C(p) of binding which probably indicates removal of hydrophobic groups from contact with water. When bicarbonate ion is absent, only the fast process of contact binding is seen. Each site within a half-molecule is qualitatively similar to the same site in intact ovotransferrin, although quantitative differences were detected. It was shown that contact binding to ovotransferrin occurs reversibly with free exchange of Fe+3 between N and C sites, while the attachment to either site becomes essentially irreversible after bicarbonate insertion. The strong preference for the first ferric ion to bind to the N site is shown to be due to its larger contact binding constant and the faster rate of bicarbonate insertion, relative to the C site, and is not due to stronger thermodynamic binding after bicarbonate insertion. True equilibrium is achieved only over much longer periods of time. In another series of experiments, direct binding studies were carried out between the two half-molecules under different states of ligation with Fe+3 in the presence of bicarbonate. The results indicate that the two binding sites in ovotransferrin, separated by ca. 40 angstrom, are not independent of one another but communicate as a result of ligand-dependent changes in the heats and free energies of domain-domain interactions. These changes in interactions are such that they increase the thermodynamic binding constant of ferric ion to the N site and decrease the binding constant to the C site, relative to the situation which would exist in the absence of interdomain signaling. This may or may not be advantageous in carrying out the physiological function of ovotransferrin.