LIMIT-THEOREMS FOR RANDOM-WALKS CONDITIONED TO STAY POSITIVE

被引:12
作者
KEENER, RW
机构
关键词
LARGE DEVIATIONS; MARKOV CHAINS; CONDITIONAL LIMIT THEOREMS; QUASI-STATIONARY DISTRIBUTIONS;
D O I
10.1214/aop/1176989807
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {S(n)} be a random walk on the integers with negative drift, and let A(n) = {S(k) greater-than-or-equal-to 0, 1 less-than-or-equal-to k less-than-or-equal-to n} and A = A(infinity). Conditioning on A is troublesome because P(A) = 0 and there is no natural sigma-field of events "like" A. A natural definition of P(B\A) is lim(n --> infinity) P(B\A(n)). The main result here shows that this definition makes sense, at least for a large class of events B: The finite-dimensional conditional distributions for the process {S(k)}k greater-than-or-equal-to 0 given A(n) converge strongly to the finite-dimensional distributions for a measure Q. This distribution Q is identified as the distribution for a stationary Markov chain on {0, 1,...}.
引用
收藏
页码:801 / 824
页数:24
相关论文
共 27 条
[1]  
BARNDORFFNIELSEN O, 1979, J ROY STAT SOC B MET, V41, P279
[2]  
BROWN LD, 1986, FUNDAMENTALS STATIST
[3]   QUASI-STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK [J].
DALEY, DJ .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02) :532-&
[4]   SADDLEPOINT APPROXIMATIONS IN STATISTICS [J].
DANIELS, HE .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (04) :631-650
[5]  
Darroch JN, 1965, J APPL PROBAB, V2, P88, DOI DOI 10.2307/3211876
[6]   CONDITIONED LIMIT-THEOREMS FOR RANDOM-WALKS WITH NEGATIVE DRIFT [J].
DURRETT, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 52 (03) :277-287
[7]  
HOGAN M, 1984, J APPL PROBAB, V23, P89
[8]  
Iglehart D. L., 1974, STOCHASTIC PROCESSES, V1, P167
[9]   RANDOM-WALKS WITH NEGATIVE DRIFT CONDITIONED TO STAY POSITIVE [J].
IGLEHART, DL .
JOURNAL OF APPLIED PROBABILITY, 1974, 11 (04) :742-751
[10]   FUNCTIONAL CENTRAL LIMIT THEOREMS FOR RANDOM-WALKS CONDITIONED TO STAY POSITIVE [J].
IGLEHART, DL .
ANNALS OF PROBABILITY, 1974, 2 (04) :608-619