EXCHANGEABLE PROCESSES NEED NOT BE MIXTURES OF INDEPENDENT, IDENTICALLY DISTRIBUTED RANDOM-VARIABLES

被引:22
作者
DUBINS, LE
FREEDMAN, DA
机构
[1] Department of Statistics, University of California, Berkeley, 94720, CA
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1979年 / 48卷 / 02期
关键词
D O I
10.1007/BF01886868
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
According to a theorem of de Finetti's, an exchangeable stochastic process with values in a compact metric space can be represented as a mixture of sequences of independent, identically distributed random variables. This paper demonstrates the existence of a separable metric space for which the conclusion fails. In the opposite direction, an example is given of a nonstandard space for which the representation necessarily holds. Modifications of the argument lead to examples of exchangeable stochastic processes and stationary Markov processes which take values in a separable metric space but do not satisfy the conclusions of the Kolmogorov consistency theorem. © 1979 Springer-Verlag.
引用
收藏
页码:115 / 132
页数:18
相关论文
共 13 条
[1]  
DIACONIS P, UNPUBLISHED
[2]   MEASURABLE SETS OF MEASURES [J].
DUBINS, L ;
FREEDMAN, D .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (04) :1211-&
[3]  
DYNKIN EB, 1979, ANN PROB, V6, P705
[4]  
Greenleaf FP, 1969, INVARIANT MEANS TOPO
[5]  
Hewitt E., 1955, T AM MATH SOC, V80, P470, DOI DOI 10.1090/S0002-9947-1955-0076206-8
[6]  
KURATOWSKI K, 1958, TOPOLOGIE 1
[7]  
Meyer P.A., 1966, PROBABILITY POTENTIA
[8]   NOTE ON EXCHANGEABLE SEQUENCES [J].
OLSHEN, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 28 (04) :317-321
[9]   ERGODIC SETS [J].
OXTOBY, JC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (02) :116-136
[10]  
Varadarajan V. S., 1963, T AM MATH SOC, P191, DOI 10.1090/S0002-9947-1963-0159923-5