SECONDARY-ION AND ELECTRON PRODUCTION FROM SURFACES BOMBARDED BY LARGE POLYATOMIC IONS

被引:35
作者
MARTENS, J
ENS, W
STANDING, KG
VERENTCHIKOV, A
机构
[1] Department of Physics, University of Manitoba, Winnipeg
关键词
D O I
10.1002/rcm.1290060215
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Heavy molecular ions with energies in the range 10-20 keV and masses from 276 u to 132000 u, produced by matrix-assisted laser desorption, were used as primary projectiles to produce secondary-ion spectra from a variety of surfaces in a tandem time-of-flight mass spectrometer. In the negative mode the ratio of electron emission to secondary-ion emission was found to decrease rapidly with increasing projectile mass. Ion emission was found to dominate for primary ions larger than approximately 10 000 u. Positive or negative molecular ions and cations were observed from several organic targets of masses up to 1140 u (gramicidin S) for incident projectiles up to mass 132 000 u, i.e., for projectile speeds down to approximately 7000 m/s. Other ions characteristic of the target were also observed for these projectiles. Thus, large polyatomic ions can cause secondary-ion desorption even at very low velocity. The background ions of both polarities are similar to those found in keV particle bombardment by monatomic projectiles. The same ions are observed for all the projectiles; most can be identified with hydrocarbon background. The relative intensities of the background positive ions are largely independent of projectile, and for both polarities the ratio of the ions characterizing the target to those forming the background is approximately constant for all the projectiles. These results strongly suggest that the background ions come from the usual layer of organic impurities attached to the target surface. No direct evidence for surface-induced dissociation was observed in this mass and energy range.
引用
收藏
页码:147 / 157
页数:11
相关论文
共 45 条
[1]   SECONDARY ION MASS-SPECTROMETRY WITH CESIUM ION PRIMARY BEAM AND LIQUID TARGET MATRIX FOR ANALYSIS OF BIOORGANIC COMPOUNDS [J].
ABERTH, W ;
STRAUB, KM ;
BURLINGAME, AL .
ANALYTICAL CHEMISTRY, 1982, 54 (12) :2029-2034
[2]  
Andersen H. H., 1981, Sputtering by particle bombardment I. Physical sputtering of single-element solids, P145
[3]   FAST ATOM BOMBARDMENT OF SOLIDS (FAB) - A NEW ION-SOURCE FOR MASS-SPECTROMETRY [J].
BARBER, M ;
BORDOLI, RS ;
SEDGWICK, RD ;
TYLER, AN .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1981, (07) :325-327
[4]   VELOCITY DISTRIBUTIONS OF INTACT HIGH MASS POLYPEPTIDE MOLECULE IONS PRODUCED BY MATRIX ASSISTED LASER DESORPTION [J].
BEAVIS, RC ;
CHAIT, BT .
CHEMICAL PHYSICS LETTERS, 1991, 181 (05) :479-484
[5]   DETECTION, IDENTIFICATION AND STRUCTURAL INVESTIGATION OF BIOLOGICALLY IMPORTANT COMPOUNDS BY SECONDARY ION MASS-SPECTROMETRY [J].
BENNINGHOVEN, A ;
SICHTERMANN, WK .
ANALYTICAL CHEMISTRY, 1978, 50 (08) :1180-1184
[6]   LARGER CLUSTER ION IMPACT PHENOMENA [J].
BEUHLER, R ;
FRIEDMAN, L .
CHEMICAL REVIEWS, 1986, 86 (03) :521-537
[8]   CLUSTER-IMPACT FUSION [J].
BEUHLER, RJ ;
FRIEDLANDER, G ;
FRIEDMAN, L .
PHYSICAL REVIEW LETTERS, 1989, 63 (12) :1292-1295
[9]   CLUSTER-IMPACT FUSION - TIME-OF-FLIGHT EXPERIMENTS [J].
BEUHLER, RJ ;
CHU, YY ;
FRIEDLANDER, G ;
FRIEDMAN, L ;
ALESSI, JG ;
LODESTRO, V ;
THOMAS, JP .
PHYSICAL REVIEW LETTERS, 1991, 67 (04) :473-476
[10]   SECONDARY-ION YIELDS FROM SURFACES BOMBARDED WITH KEV MOLECULAR AND CLUSTER IONS [J].
BLAIN, MG ;
DELLANEGRA, S ;
JORET, H ;
LEBEYEC, Y ;
SCHWEIKERT, EA .
PHYSICAL REVIEW LETTERS, 1989, 63 (15) :1625-1628