HIERARCHICAL MIXTURES OF EXPERTS AND THE EM ALGORITHM

被引:1609
作者
JORDAN, MI [1 ]
JACOBS, RA [1 ]
机构
[1] UNIV ROCHESTER,DEPT PSYCHOL,ROCHESTER,NY 14627
关键词
D O I
10.1162/neco.1994.6.2.181
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM's). Learning is treated as a maximum likelihood problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an on-line learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.
引用
收藏
页码:181 / 214
页数:34
相关论文
共 41 条
  • [1] [Anonymous], NEUROCOMPUTING ALGOR
  • [2] AUTO-ASSOCIATION BY MULTILAYER PERCEPTRONS AND SINGULAR VALUE DECOMPOSITION
    BOURLARD, H
    KAMP, Y
    [J]. BIOLOGICAL CYBERNETICS, 1988, 59 (4-5) : 291 - 294
  • [3] Breiman L, 2017, CLASSIFICATION REGRE, P368, DOI 10.1201/9781315139470
  • [4] BUNTINE W, 1991, NASA FIA90121901 AM
  • [5] CHEESEMAN P, 1988, 5TH P INT C MACH LEA
  • [6] Cox D.R., 1974, THEORETICAL STAT
  • [7] Cox D.R., 1989, ANAL BINARY DATA, V32
  • [8] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [9] Duda R. O., 1973, PATTERN CLASSIFICATI, V3
  • [10] FINNEY DJ, 1973, STATISTICAL METHODS