AN OPTIMAL-DESIGN PROBLEM WITH PERIMETER PENALIZATION

被引:187
作者
AMBROSIO, L
BUTTAZZO, G
机构
[1] UNIV ROMA TOR VERGATA,I-00133 ROME,ITALY
[2] DIPARTIMENTO MATEMAT,I-56127 PISA,ITALY
关键词
D O I
10.1007/BF02163264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the optimal design problem of finding the minimal energy configuration for a mixture of two conducting materials when a perimeter penalization of the unknown domain is added. We show that in this situation an optimal domain exists and that, under suitable assumptions on the data, it is an open set.
引用
收藏
页码:55 / 69
页数:15
相关论文
共 17 条
[1]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P107
[2]  
Buttazzo G., 1989, PITMAN RES NOTES MAT, V207
[3]  
Campanato S., 1980, SISTEMI ELLITTICI FO
[4]  
De Giorgi E., 1957, MEN ACCAD SCI TORINO, V3, P25
[5]   EXISTENCE THEOREM FOR A MINIMUM PROBLEM WITH FREE DISCONTINUITY SET [J].
DEGIORGI, E ;
CARRIERO, M ;
LEACI, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (03) :195-218
[6]  
FEDERER H, 1969, GEOMETRIC MEASURE TH
[7]  
GIAQUINTA M, 1979, J REINE ANGEW MATH, V311, P145
[8]   ON THE REGULARITY OF THE MINIMA OF VARIATIONAL INTEGRALS [J].
GIAQUINTA, M ;
GIUSTI, E .
ACTA MATHEMATICA, 1982, 148 :31-46
[9]  
Giaquinta M., 1983, MULTIPLE INTEGRALS C
[10]  
GIUSTI E, 1984, MINIMAL SURFACES FUN