ON 2-DIMENSIONAL PERCOLATION

被引:33
作者
CONWAY, AR [1 ]
GUTTMANN, AJ [1 ]
机构
[1] UNIV MELBOURNE,DEPT MATH,PARKVILLE,VIC 3052,AUSTRALIA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 04期
关键词
D O I
10.1088/0305-4470/28/4/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present new series data for both high- and low-density bond and site percolation on the square lattice. The series have been obtained by the finite-lattice method, and in ail cases extend pre-existing series. An analysis of these series gives refined estimates of critical points, critical exponents and amplitudes for bond and site animals, and for the percolation probability and mean-size exponents.
引用
收藏
页码:891 / 904
页数:14
相关论文
共 17 条
[1]   Computer simulations [J].
Adler, Joan .
Computers in Physics, 1994, 8 (03)
[2]  
BETTS DD, 1994, J PHYS C, V4
[3]   UNIVERSAL AMPLITUDE COMBINATIONS FOR SELF-AVOIDING WALKS, POLYGONS AND TRAILS [J].
CARDY, JL ;
GUTTMANN, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (11) :2485-2494
[4]   ENUMERATING 2D PERCOLATION SERIES BY THE FINITE-LATTICE METHOD - THEORY [J].
CONWAY, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (02) :335-349
[5]  
CONWAY AR, 1994, J PHYS A, V21, P7007
[6]   SELF-AVOIDING RINGS ON THE TRIANGULAR LATTICE [J].
ENTING, IG ;
GUTTMANN, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (10) :2791-2807
[7]   ON THE AREA OF SQUARE LATTICE POLYGONS [J].
ENTING, IG ;
GUTTMANN, AJ .
JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (3-4) :475-484
[8]   PERCOLATION THEORY [J].
ESSAM, JW .
REPORTS ON PROGRESS IN PHYSICS, 1980, 43 (07) :833-912
[9]  
FRIEDAN D, 1984, PHYS REV LETT, V52, P1875
[10]   PERCOLATION PROCESSES IN 2 DIMENSIONS .5. EXPONENT DELTA-P AND SCALING THEORY [J].
GAUNT, DS ;
SYKES, MF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (07) :1109-1116