O(3,3)-LIKE SYMMETRIES OF COUPLED HARMONIC-OSCILLATORS

被引:28
作者
HAN, D
KIM, YS
NOZ, ME
机构
[1] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
[2] NYU,DEPT RADIOL,NEW YORK,NY 10016
关键词
D O I
10.1063/1.530940
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In classical mechanics, the system of two coupled harmonic oscillators is shown to possess the symmetry of the Lorentz group O(3,3) or SL(4,r) in the four-dimensional phase space. In quantum mechanics, the symmetry is reduced to that of O(3,2) or Sp(4), which is a subgroup of O(3,3) or SL(4,r), respectively. It is shown that among the six Sp(4)-like subgroups, only one possesses the symmetry which can be translated into the group of unitary transformations in quantum mechanics. (C) 1995 American Institute of Physics.
引用
收藏
页码:3940 / 3954
页数:15
相关论文
共 32 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[3]  
Arnold VI., 1978, MATH METHODS CLASSIC, DOI 10.1007/978-1-4757-1693-1
[4]   THERMOFIELD ANALYSIS OF SQUEEZING AND STATISTICAL MIXTURES IN QUANTUM OPTICS [J].
BARNETT, SM ;
KNIGHT, PL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1985, 2 (03) :467-479
[5]  
BELL ET, 1937, MEN MATH
[6]   GENERAL 2-MODE SQUEEZED STATES [J].
BISHOP, RF ;
VOURDAS, A .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1988, 71 (04) :527-529
[7]  
BOGOLIUBOV NN, 1958, ZH EKSP TEOR FIZ, V7, P41
[8]   NEW FORMALISM FOR 2-PHOTON QUANTUM OPTICS .1. QUADRATURE PHASES AND SQUEEZED STATES [J].
CAVES, CM ;
SCHUMAKER, BL .
PHYSICAL REVIEW A, 1985, 31 (05) :3068-3092
[9]   A REMARKABLE REPRESENTATION OF 3 + 2 DE SITTER GROUP [J].
DIRAC, PAM .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (07) :901-&
[10]   CORRELATIONS AND SQUEEZING OF 2-MODE OSCILLATIONS [J].
EKERT, AK ;
KNIGHT, PL .
AMERICAN JOURNAL OF PHYSICS, 1989, 57 (08) :692-697