CANONICAL QUANTIZATION OF TOPOLOGICALLY MASSIVE GRAVITY

被引:22
作者
BUCHBINDER, IL
LYAKHOVICH, SL
KRYKHTIN, VA
机构
[1] TOMSK STATE PEDAG INST,DEPT THEORET PHYS,TOMSK 634041,RUSSIA
[2] TOMSK VV KUIBYSHEV STATE UNIV,DEPT QUANTUM FIELD THEORY,TOMSK 634010,RUSSIA
关键词
D O I
10.1088/0264-9381/10/10/015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An approach to a canonical formulation of three-dimensional topologically massive gravity is developed. The constraints are calculated in an explicit form both for this theory and for pure Chern-Simons gravity. The local measure in the corresponding path integrals is found. It is shown that owing to the local measure factors the one-loop volume divergences are absent in these theories.
引用
收藏
页码:2083 / 2090
页数:8
相关论文
共 10 条
[1]   CANONICAL QUANTIZATION AND LOCAL MEASURE OF R2 GRAVITY [J].
BUCHBINDER, IL ;
LYAKHOVICH, SL .
CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (06) :1487-1501
[2]   MULTIDIMENSIONAL R2 GRAVITY - THE STRUCTURE OF CONSTRAINTS AND CANONICAL QUANTIZATION [J].
BUCHBINDER, IL ;
KARATAEVA, IY ;
LYAKHOVICH, SL .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (06) :1113-1125
[3]   IS TOPOLOGICALLY MASSIVE GRAVITY RENORMALIZABLE [J].
DESER, S ;
YANG, Z .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (09) :1603-1612
[4]   CANONICAL FORMULATIONS OF FULL NONLINEAR TOPOLOGICALLY MASSIVE GRAVITY [J].
DESER, S ;
XIANG, X .
PHYSICS LETTERS B, 1991, 263 (01) :39-43
[5]   3-DIMENSIONAL MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R ;
TEMPLETON, S .
PHYSICAL REVIEW LETTERS, 1982, 48 (15) :975-978
[6]   TOPOLOGICALLY MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R ;
TEMPLETON, S .
ANNALS OF PHYSICS, 1982, 140 (02) :372-411
[7]   S-MATRIX FOR GRAVITATIONAL-FIELD .2. LOCAL MEASURE - GENERAL RELATIONS - ELEMENTS OF RENORMALIZATION THEORY [J].
FRADKIN, ES ;
VILKOVISKY, GA .
PHYSICAL REVIEW D, 1973, 8 (12) :4241-4285
[8]  
GITMAN DM, 1987, IZV VUZOV FIS N, V8, P61
[9]   RENORMALIZABILITY OF D=3 TOPOLOGICALLY MASSIVE GRAVITY [J].
KESZTHELYI, B ;
KLEPPE, G .
PHYSICS LETTERS B, 1992, 281 (1-2) :33-35
[10]   2+1 DIMENSIONAL GRAVITY AS AN EXACTLY SOLUBLE SYSTEM [J].
WITTEN, E .
NUCLEAR PHYSICS B, 1988, 311 (01) :46-78