ATTRACTORS AND TRANSIENTS FOR A PERTURBED PERIODIC KDV EQUATION - A NONLINEAR SPECTRAL-ANALYSIS

被引:32
作者
ERCOLANI, NM
MCLAUGHLIN, DW
ROITNER, H
机构
[1] Program in Applied Mathematics, University of Arizona, Tucson, 85721, AZ
关键词
NEARLY INTEGRABLE SYSTEMS; SPECTRAL TRANSFORM; ATTRACTORS; TRAVELING WAVES; STABILITY; NUMERICAL METHODS;
D O I
10.1007/BF02429875
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we rigorously show the existence and smoothness in epsilon of traveling wave solutions to a periodic Korteweg-deVries equation with a Kuramoto-Sivashinsky-type perturbation for sufficiently small values of the perturbation parameter epsilon. The shape and the spectral transforms of these traveling waves are calculated perturbatively to first order. A linear stability theory using squared eigenfunction bases related to the spectral theory of the KdV equation is proposed and carried out numerically. Finally, the inverse spectral transform is used to study the transient and asymptotic stages of the dynamics of the solutions.
引用
收藏
页码:477 / 539
页数:63
相关论文
共 40 条
[1]  
Arnold V. I., 1988, MATH METHODS CLASSIC
[2]  
Byrd P. F., 1954, HDB ELLIPTIC INTEGRA, V1st
[3]  
CARR J, 1981, APPLIED MATH SCI, V38
[4]  
CIARLET PG, 1990, HDB NUMERICAL ANAL
[5]   NONLINEAR SATURATION OF DISSIPATIVE TRAPPED-ION MODE BY MODE-COUPLING [J].
COHEN, BI ;
KROMMES, JA ;
TANG, WM ;
ROSENBLUTH, MN .
NUCLEAR FUSION, 1976, 16 (06) :971-992
[6]  
COLLET P, 1992, GLOBAL ATTRACTING SE
[7]  
DERKS G, 1992, THESIS U TWENTE NETH
[8]  
ERCOLANI NM, 1987, GEOMETRY MODULATION, V1
[9]  
FENICHEL N, 1979, J DIFFER EQUATIONS, V31, P58
[10]   CANONICALLY CONJUGATE VARIABLES FOR KORTEWEG-DEVRIES EQUATION AND TODA LATTICE WITH PERIODIC BOUNDARY-CONDITIONS [J].
FLASCHKA, H ;
MCLAUGHLIN, DW .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :438-456