CUSTOMER AVERAGE AND TIME AVERAGE QUEUE LENGTHS AND WAITING TIMES

被引:31
作者
MARSHALL, KT
WOLFF, RW
机构
关键词
D O I
10.2307/3212176
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:535 / &
相关论文
共 12 条
[1]  
Barlow R. E., 1965, MATH THEORY RELIABIL
[2]  
BRUMELLE SL, 1969, ORC6917 U CAL BERK O
[3]   2-SIDED INEQUALITIES FOR WAITING TIME AND QUEUE SIZE DISTRIBUTIONS IN GI/G/1 [J].
DALEY, DJ ;
MORAN, PAP .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (02) :338-&
[4]  
FINCH PD, 1959, ACTA MATH ACAD SCI H, V10, P327
[5]  
JORDON C, 1950, CALCULUS FINITE DIFF
[6]   ON THE CHARACTERISTICS OF THE GENERAL QUEUING PROCESS, WITH APPLICATIONS TO RANDOM-WALK [J].
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (01) :147-161
[7]  
KINGMAN JFC, 1970, J ROY STAT SOC B, V32, P102
[8]   SOME INEQUALITIES FOR QUEUE GI/G/1 [J].
KINGMAN, JFC .
BIOMETRIKA, 1962, 49 (3-4) :315-&
[9]   A PROOF FOR THE QUEUING FORMULA - L=LAMBDA-W [J].
LITTLE, JDC .
OPERATIONS RESEARCH, 1961, 9 (03) :383-387
[10]   SOME INEQUALITIES IN QUEUING [J].
MARSHALL, KT .
OPERATIONS RESEARCH, 1968, 16 (03) :651-&