POSTERIOR BAYES FACTOR-ANALYSIS FOR AN EXPONENTIAL REGRESSION-MODEL

被引:5
作者
AITKIN, M
机构
[1] UNIV WESTERN AUSTRALIA,DEPT MATH,NEDLANDS,WA 6009,AUSTRALIA
[2] TEL AVIV UNIV,DEPT STAT,IL-69978 TEL AVIV,ISRAEL
关键词
POSTERIOR BAYES FACTOR; BAYES ANALYSIS; EXPONENTIAL REGRESSION; IMPROPER POSTERIOR;
D O I
10.1007/BF00146949
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the exponential regression model, Bayesian inference concerning the non-linear regression parameter rho has proved extremely difficult. In particular, standard improper diffuse priors for the usual parameters lead to an improper posterior for the non-linear regression parameter. In a recent paper Ye and Berger (1991) applied the reference prior approach of Bernardo (1979) and Berger and Bernardo (1989) yielding a proper informative prior for rho. This prior depends on the values of the explanatory variable, goes to 0 as rho goes to 1, and depends on the specification of a hierarchical ordering of importance of the parameters. This paper explains the failure of the uniform prior to give a proper posterior: the reason is the appearance of the determinant of the information matrix in the posterior density for rho. We apply the posterior Bayes factor approach of Aitkin (1991) to this problem; in this approach we integrate out nuisance parameters with respect to their conditional posterior density given the parameter of interest. The resulting integrated likelihood for rho requires only the standard diffuse prior for all the parameters, and is unaffected by orderings of importance of the parameters. Computation of the likelihood for rho is extremely simple. The approach is applied to the three examples discussed by Berger and Ye and the likelihoods compared with their posterior densities.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 9 条
[1]  
AITKIN M, 1991, J ROY STAT SOC B MET, V53, P111
[2]   MODEL CHOICE IN CONTINGENCY TABLE ANALYSIS USING THE POSTERIOR BAYES FACTOR [J].
AITKIN, M .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 13 (03) :245-251
[3]  
AITKIN M, 1992, MATH SCI, V17, P15
[4]   ESTIMATING A PRODUCT OF MEANS - BAYESIAN-ANALYSIS WITH REFERENCE PRIORS [J].
BERGER, JO ;
BERNARDO, JM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (405) :200-207
[5]  
BERNARDO JM, 1979, J R STAT SOC B, V41, P113
[6]   SOME REMARKS ON THE USE OF IMPROPER PRIORS FOR THE ANALYSIS OF EXPONENTIAL REGRESSION-MODELS [J].
CONSONNI, G ;
VERONESE, P .
BIOMETRIKA, 1989, 76 (01) :101-106
[7]   A FURTHER NOTE ON A SIMPLE METHOD FOR FITTING AN EXPONENTIAL CURVE [J].
PATTERSON, HD .
BIOMETRIKA, 1960, 47 (1-2) :177-180
[8]  
YE KY, 1991, BIOMETRIKA, V78, P645
[9]  
[No title captured]