LEVINSON THEOREM FOR THE DIRAC-EQUATION

被引:29
作者
POLIATZKY, N [1 ]
机构
[1] WEIZMANN INST SCI,DEPT PHYS,IL-76100 REHOVOT,ISRAEL
关键词
D O I
10.1103/PhysRevLett.70.2507
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Levinson's theorem for the Dirac equation is known in the form of a sum of positive and negative energy phase shifts at zero momentum related to the total number of bound states. In this Letter we prove a stronger version of Levinson's theorem valid for positive and negative energy phase shifts separately. The surprising result is that, in general, the phase shifts for each sign of the energy do not give the number of bound states with the same sign of the energy (in units of pi), but instead are related to the number of bound states of a certain Schrodinger equation, which coincides with the Dirac equation at zero momentum.
引用
收藏
页码:2507 / 2510
页数:4
相关论文
共 15 条
[1]  
[Anonymous], 1964, RELATIVISTIC QUANTUM
[2]  
[Anonymous], 1958, NUOVO CIM, DOI DOI 10.1007/BF02751483
[3]  
BARTHELEMY MC, 1967, ANN I H POINCARE A, V7, P115
[4]   EXTENSIONS OF LEVINSON THEOREM - APPLICATION TO INDEXES AND FRACTIONAL CHARGE [J].
BLANKENBECLER, R ;
BOYANOVSKY, D .
PHYSICA D, 1986, 18 (1-3) :367-367
[5]   NODAL STRUCTURE AND PHASE-SHIFTS OF ZERO-INCIDENT-ENERGY WAVE-FUNCTIONS - MULTIPARTICLE SINGLE-CHANNEL SCATTERING [J].
IWINSKI, ZR ;
ROSENBERG, L ;
SPRUCH, L .
PHYSICAL REVIEW A, 1986, 33 (02) :946-953
[6]   LEVINSONS THEOREM AND THE NODES OF ZERO-ENERGY WAVE-FUNCTIONS FOR POTENTIALS WITH REPULSIVE COULOMB TAILS [J].
IWINSKI, ZR ;
ROSENBERG, L ;
SPRUCH, L .
PHYSICAL REVIEW LETTERS, 1985, 54 (15) :1602-1604
[7]  
Jauch J. M., 1957, HELV PHYS ACTA, V30, P143
[8]  
LEVINSON N, 1949, K DAN VID SELSK MAT, V25
[9]   LEVINSON THEOREM FOR DIRAC PARTICLES WITH A LONG-RANGE POTENTIAL [J].
MA, ZQ .
PHYSICAL REVIEW D, 1985, 32 (08) :2213-2215
[10]   LEVINSON THEOREM FOR DIRAC PARTICLES MOVING IN A BACKGROUND MAGNETIC MONOPOLE FIELD [J].
MA, ZQ .
PHYSICAL REVIEW D, 1985, 32 (08) :2203-2212