THE ASYMPTOTIC-BEHAVIOR OF FIEDLER ALGEBRAIC CONNECTIVITY FOR RANDOM GRAPHS

被引:17
作者
JUHASZ, F
机构
[1] Hungarian Academy of Sciences, Budapest
关键词
D O I
10.1016/0012-365X(91)90470-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(n) be a 2-block random graph with the expectations p12 less-than-or-equal-to p11, p22. It is proved that the algebraic connectivity is p12n + o(n1/2 + epsilon) in probability.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 9 条
[2]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[3]  
FIEDLER M, 1975, INT SCHRIFT ENREIHE, V29
[4]   THE EIGENVALUES OF RANDOM SYMMETRIC-MATRICES [J].
FUREDI, Z ;
KOMLOS, J .
COMBINATORICA, 1981, 1 (03) :233-241
[5]  
JUHASZ F, 1984, Z ANGEW MATH MECH, V64, pT335
[6]  
JUHASZ F, 1982, COMBINATORICA, V2, P153, DOI 10.1007/BF02579314
[7]  
Juhasz F., 1981, COLL MATH SOC J BOLY, V25, P313
[8]   CHARACTERISTIC VECTORS OF BORDERED MATRICES WITH INFINITE DIMENSIONS [J].
WIGNER, EP .
ANNALS OF MATHEMATICS, 1955, 62 (03) :548-564
[9]  
Wilkinson JH., 1965, ALGEBRAIC EIGENVALUE