ON THE LIE EXTENDED METHOD IN QUANTUM PHYSICS AND ITS SUPERSYMMETRIC VERSION

被引:4
作者
BECKERS, J
DEBERGH, N
机构
[1] Inst. de Phys., Liege Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 08期
关键词
D O I
10.1088/0305-4470/23/8/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The authors propose the supersymmetric version of the Lie extended method in quantum physics. They point out the main ideas through the explicit example of the one-dimensional supersymmetric harmonic oscillator.
引用
收藏
页码:L353 / L357
页数:5
相关论文
共 23 条
[1]  
[Anonymous], 2013, LIE GROUPS ALGEBRAS
[2]   SYMMETRIES AND SUPERSYMMETRIES OF THE QUANTUM HARMONIC-OSCILLATOR [J].
BECKERS, J ;
DEHIN, D ;
HUSSIN, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (05) :1137-1154
[3]   DYNAMIC SUPERSYMMETRIES OF THE HARMONIC-OSCILLATOR [J].
BECKERS, J ;
HUSSIN, V .
PHYSICS LETTERS A, 1986, 118 (07) :319-321
[4]   DYNAMICAL AND KINEMATICAL SUPERSYMMETRIES OF THE QUANTUM HARMONIC-OSCILLATOR AND THE MOTION IN A CONSTANT MAGNETIC-FIELD [J].
BECKERS, J ;
DEHIN, D ;
HUSSIN, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (03) :651-667
[5]  
BECKERS J, 1989, LIE EXTENDED SUPERSY
[6]  
BEREZIN FA, 1975, JETP LETT+, V21, P320
[7]  
BEREZIN FA, 1966, METHOD 2ND QUANTIZAT
[8]   QUANTIZATION OF SYSTEMS WITH ANTI-COMMUTING VARIABLES [J].
CASALBUONI, R .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 33 (01) :115-125
[9]   SUPERSYMMETRIC QUANTUM-MECHANICS [J].
DECROMBRUGGHE, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1983, 151 (01) :99-126
[10]  
DHOKER E, 1988, DYNAMICAL GROUPS SPE