RAS-ALGORITHM

被引:26
作者
BACHEM, A
KORTE, B
机构
[1] Institut für Ökonometrie und Operations Research, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn
关键词
D O I
10.1007/BF02252097
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a nonnegative real (m, n) matrix A and positive vectors u, v, then the biproportional constrained matrix problem is to find a nonnegative (m, n) matrix B such that B=diag (x) A diag (y) holds for some vectors x ∈ ℝm and y ∈ ℝn and the row (column) sums of B equal ui (vj)i=1,..., m(j=1,..., n). A solution procedure (called the RAS-method) was proposed by Bacharach [1] to solve this problem. The main disadvantage of this algorithm is, that round-off errors slow down the convergence. Here we present a modified RAS-method which together with several other improvements overcomes this disadvantage. © 1979 Springer-Verlag.
引用
收藏
页码:189 / 198
页数:10
相关论文
共 8 条
[1]  
BACHEM A, 1977, 7784OR U BONN I OK O
[2]  
BACHEM A, 1979, 79130OR U BONN I OK
[3]  
BINGEN F, 1965, SIMPLIFICATION DEMON
[4]   On a least squares adjustment of a sampled frequency table when the expected marginal totals are known [J].
Deming, WE ;
Stephan, FF .
ANNALS OF MATHEMATICAL STATISTICS, 1940, 11 :427-444
[5]  
Frechet M., 1960, REV I INT STAT, V28, P10
[6]   A TECHNIQUE FOR ESTIMATING A CONTINGENCY TABLE, GIVEN THE MARGINAL TOTALS AND SOME SUPPLEMENTARY DATA [J].
FRIEDLANDER, D .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-GENERAL, 1961, 124 (03) :412-420
[7]  
GORMAN WM, 1963, ESTIMATING TRENDS LE
[8]  
STONE R, 1961, INPUT OUTPUT NATIONA