THE LAW OF THE ITERATED LOGARITHM FOR EMPIRICAL PROCESSES ON VAPNIK-CERVONENKIS CLASSES

被引:17
作者
ALEXANDER, KS
TALAGRAND, M
机构
[1] UNIV PARIS 06,F-75005 PARIS,FRANCE
[2] OHIO STATE UNIV,COLUMBUS,OH 43210
关键词
D O I
10.1016/0047-259X(89)90093-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:155 / 166
页数:12
相关论文
共 17 条
[1]   THE CENTRAL-LIMIT-THEOREM FOR EMPIRICAL PROCESSES ON VAPNIK-CERVONENKIS CLASSES [J].
ALEXANDER, KS .
ANNALS OF PROBABILITY, 1987, 15 (01) :178-203
[2]   PROBABILITY-INEQUALITIES FOR EMPIRICAL PROCESSES AND A LAW OF THE ITERATED LOGARITHM [J].
ALEXANDER, KS .
ANNALS OF PROBABILITY, 1984, 12 (04) :1041-1067
[3]   THE CENTRAL-LIMIT-THEOREM FOR WEIGHTED EMPIRICAL PROCESSES INDEXED BY SETS [J].
ALEXANDER, KS .
JOURNAL OF MULTIVARIATE ANALYSIS, 1987, 22 (02) :313-339
[4]  
ALEXANDER KS, 1989, IN PRESS ANN PROBAB, V17
[5]   SOME RESULTS ON THE CLUSTER SET C([SN-AN]) AND THE LIL [J].
DEACOSTA, A ;
KUELBS, J .
ANNALS OF PROBABILITY, 1983, 11 (01) :102-122
[6]  
Dudley R.M, 1984, LECT NOTES MATH, P1
[7]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929
[8]   SAMPLE FUNCTIONS OF GAUSSIAN PROCESS [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1973, 1 (01) :66-103
[9]  
Durst M., 1981, PROBABILITY MATH STA, V1, P109
[10]   SOME LIMIT-THEOREMS FOR EMPIRICAL PROCESSES [J].
GINE, E ;
ZINN, J .
ANNALS OF PROBABILITY, 1984, 12 (04) :929-989