SYMPATHETIC DENERVATION BLOCKS BLOOD-PRESSURE ELEVATION IN EPISODIC HYPOXIA

被引:208
作者
FLETCHER, EC
LESSKE, J
CULMAN, J
MILLER, CC
UNGER, T
机构
[1] BAYLOR COLL MED, DEPT MED, PULM DIS SECT, VET AFFAIRS MED CTR, HOUSTON, TX 77030 USA
[2] UNIV HEIDELBERG, INST HIGH BLOOD PRESSURE RES, HEIDELBERG, GERMANY
[3] UNIV HEIDELBERG, DEPT PHARMACOL, HEIDELBERG, GERMANY
关键词
APNEA; SLEEP APNEA SYNDROMES; ANOXIA; ANOXEMIA; HYPERTENSION; ESSENTIAL; BLOOD PRESSURE; HIGH; SYMPATHETIC NERVOUS SYSTEM;
D O I
10.1161/01.HYP.20.5.612
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
We have previously described a rat model that responds to repetitive episodic hypoxia (FiO2 nadir 3-5% for 12 seconds every 30 seconds for 7 hr/day for 35 days) with chronic increase in arterial blood pressure. The purpose of the current study was to determine if peripheral sympathetic nervous system denervation blocks this persistent blood pressure elevation, Chemical sympathetic denervation was achieved and, maintained by three intraperitoneal injections (100 mg/kg 6-hydroxydopamine) on days 1, 3, and 27 of a 47-day experiment in two groups of rats. One denervated group was subjected to episodic hypoxia for 40 consecutive days beginning on day 7 and the other remained unhandled in their usual cages. A third group was injected with vehicle only and subjected to the same episodic hypoxia while a fourth group remained unhandled for 40 days. The vehicle-treated, episodic hypoxia-exposed group showed a 7.7 mm Hg increase in mean arterial blood pressure (conscious, unrestrained) over the 40-day period, whereas all other groups showed a decrease in mean arterial pressure. The left ventricle and septum/whole body weight ratio was higher in both episodic hypoxia-exposed groups at the end of the study. Plasma epinephrine in both groups administered 6-hydroxydopamine was higher on day 6 than in the vehicle-injected rats. Measurement of catecholamines in cardiac muscle homogenate confirmed denervation in 6-hydroxydopamine animals. These results indicate that the peripheral sympathetic nervous system is necessary for the persistent increase in blood pressure in response to repetitive episodic hypoxia.
引用
收藏
页码:612 / 619
页数:8
相关论文
共 49 条
[1]  
ANTON AH, 1962, J PHARMACOL EXP THER, V138, P360
[2]  
BEHM R, 1984, BIOMED BIOCHIM ACTA, V43, P975
[3]  
BEHM R, 1986, BIOMED BIOCHIM ACTA, V45, P787
[4]  
BLUMBERG H, 1985, Pfluegers Archiv European Journal of Physiology, V403, pR51
[5]  
BURACK B, 1977, CIRCULATION, V56, P177
[6]   VENTILATORY REFLEXES ORIGINATED FROM CAROTID AND EXTRACAROTID CHEMORECEPTORS IN RATS [J].
CARDENAS, H ;
ZAPATA, P .
AMERICAN JOURNAL OF PHYSIOLOGY, 1983, 244 (01) :R119-R125
[7]  
COCCAGNA G, 1972, B PHYSIO-PATHOL RESP, V8, P1159
[8]   SIMULTANEOUS RADIOENZYMATIC DETERMINATION OF PLASMA AND TISSUE ADRENALINE, NORADRENALINE AND DOPAMINE WITHIN FEMTOMOLE RANGE [J].
DAPRADA, M ;
ZURCHER, G .
LIFE SCIENCES, 1976, 19 (08) :1161-1174
[9]   REGULATION OF BLOOD-PRESSURE BY SYMPATHETIC-NERVE FIBERS AND ADRENAL-MEDULLA IN NORMOTENSIVE AND HYPERTENSIVE RATS [J].
DE CHAMPLAIN, J ;
VAN AMERINGEN, MR .
CIRCULATION RESEARCH, 1972, 31 (04) :617-+
[10]   RAPID RECOVERY OF VASCULAR ADRENERGIC NERVES IN RAT AFTER CHEMICAL SYMPATHECTOMY WITH 6-HYDROXYDOPAMINE [J].
FINCH, L ;
HAEUSLER, G ;
KUHN, H ;
THOENEN, H .
BRITISH JOURNAL OF PHARMACOLOGY, 1973, 48 (01) :59-72