PATTERN OF GLUCOSE TRANSPORTER (GLUT-1) EXPRESSION IN EMBRYONIC BRAINS IS RELATED TO MATURATION OF BLOOD-BRAIN-BARRIER TIGHTNESS

被引:76
作者
DERMIETZEL, R
KRAUSE, D
KREMER, M
WANG, C
STEVENSON, B
机构
[1] UNIV ALBERTA, DEPT BIOL, EDMONTON T6G 2E1, ALBERTA, CANADA
[2] ACAD SINICA, INST MOL BIOL, TAIPEI 91125, TAIWAN
关键词
CEREBRAL ENDOTHELIUM; DEVELOPMENT; IMMUNOCYTOCHEMISTRY; RAT;
D O I
10.1002/aja.1001930207
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
A constant supply of blood-borne glucose is vital to cerebral metabolism. Although transport of glucose into the nervous tissue, effectively separated from the blood by a functional barrier (the blood-brain barrier, BBB), is one of the essential properties of the cerebral endothelium, little is known about its metabolic regulation and developmental expression in the BBB. In this study we provide evidence by immunocytochemistry that the pattern of the brain endothelial glucose transporter in rat brains (BBBGT), immunologically homologous with the human hepatoma (G2), human erythrocyte transporter (Glut 1), changes with BBB maturation. While the neuroepithelium at embryonic days 12 and 13 shows a high incidence of immuno-detectable BBB-GT, vascularisation of the cerebral anlage and subsequent development of vascular tightness, as evidenced by intravascularly applied horseradish peroxidase and fluoresceinated dextrans, is accompanied by a significant reduction of BBB-GT expression in neuroepithelial cells and confinement of BBB-GT expression to the cerebral endothelium. Immunoblots and Northern blots of embryonic brain homogenates corroborate this change in BBB-GT expression in the brain anlage at the time of BBB maturation. However, low molecular weight glucose transporters, presumed to be of non-endothelial origin, are less dramatically reduced. The development of BBB tightness, therefore, seems to play a pivotal role in the pattern of BBB-GT expression during brain differentiation.
引用
收藏
页码:152 / 163
页数:12
相关论文
共 41 条
[1]   TRANSPORT OF GLUCOSE INTO BRAIN OF RAT IN-VIVO [J].
BACHELARD, HS ;
DANIEL, PM ;
LOVE, ER ;
PRATT, OE .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1973, 183 (1070) :71-82
[2]  
BAR T, 1980, ADV EMBRYOLOGY CELL, V79
[3]   MOLECULAR-BIOLOGY OF MAMMALIAN GLUCOSE TRANSPORTERS [J].
BELL, GI ;
KAYANO, T ;
BUSE, JB ;
BURANT, CF ;
TAKEDA, J ;
LIN, D ;
FUKUMOTO, H ;
SEINO, S .
DIABETES CARE, 1990, 13 (03) :198-208
[4]   HEXOSE TRANSPORT AND PHOSPHORYLATION BY CAPILLARIES ISOLATED FROM RAT-BRAIN [J].
BETZ, AL ;
CSEJTEY, J ;
GOLDSTEIN, GW .
AMERICAN JOURNAL OF PHYSIOLOGY, 1979, 236 (01) :C96-C102
[5]   KINETICS OF UNIDIRECTIONAL GLUCOSE TRANSPORT INTO ISOLATED DOG BRAIN [J].
BETZ, AL ;
GILBOE, DD ;
YUDILEVICH, DL ;
DREWES, LR .
AMERICAN JOURNAL OF PHYSIOLOGY, 1973, 225 (03) :586-592
[6]   POLARITY OF BLOOD-BRAIN-BARRIER - NEUTRAL AMINO-ACID TRANSPORT INTO ISOLATED BRAIN CAPILLARIES [J].
BETZ, AL ;
GOLDSTEIN, GW .
SCIENCE, 1978, 202 (4364) :225-227
[7]   CHARACTERIZATION OF THE GLUCOSE TRANSPORTER FROM RAT-BRAIN SYNAPTOSOMES [J].
BHATTACHARYYA, MV ;
BRODSKY, JL .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1988, 155 (02) :685-691
[8]   CLONING AND CHARACTERIZATION OF A CDNA-ENCODING THE RAT-BRAIN GLUCOSE-TRANSPORTER PROTEIN [J].
BIRNBAUM, MJ ;
HASPEL, HC ;
ROSEN, OM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (16) :5784-5788
[9]   INSULIN-INDUCED TRANSLOCATION OF GLUCOSE TRANSPORTERS FROM POST-GOLGI COMPARTMENTS TO THE PLASMA-MEMBRANE OF 3T3-L1 ADIPOCYTES [J].
BLOK, J ;
GIBBS, EM ;
LIENHARD, GE ;
SLOT, JW ;
GEUZE, HJ .
JOURNAL OF CELL BIOLOGY, 1988, 106 (01) :69-76
[10]   THE BRAIN-TYPE GLUCOSE TRANSPORTER MESSENGER-RNA IS SPECIFICALLY EXPRESSED AT THE BLOOD-BRAIN-BARRIER [J].
BOADO, RJ ;
PARDRIDGE, WM .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1990, 166 (01) :174-179