UNIQUENESS OF THE N-BODY "LIPPMANN-SCHWINGER-GLOCKLE-TOBOCMAN EQUATIONS

被引:17
作者
CATTAPAN, G [1 ]
VANZANI, V [1 ]
机构
[1] IST NAZL FIS NUCL, LAB LEGNARO, Padua, ITALY
来源
PHYSICAL REVIEW C | 1979年 / 19卷 / 04期
关键词
D O I
10.1103/PhysRevC.19.1168
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
It is proved that the 2N-1-1 Lippmann-Schwinger-Glöckle-Tobocman equations provide a unique solution to the N-body scattering problem and that they represent the minimum number of Lippman-Schwinger-type equations necessary and sufficient to ensure uniqueness. NUCLEAR REACTIONS Scattering theory. The N-body problem. Lippmann-Schwinger-Glöckle-Tobocman equations. © 1979 The American Physical Society.
引用
收藏
页码:1168 / 1173
页数:6
相关论文
共 18 条
[1]  
ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS, P824
[2]   COMBINATORIAL PROBLEMS IN N-PARTICLE SCATTERING [J].
BENCZE, G .
PHYSICS LETTERS B, 1977, 72 (02) :155-158
[3]   COMMENTS ON SOME PROBLEMS IN MANY-BODY SCATTERING THEORY [J].
BENOISTGUEUTAL, P .
PHYSICS LETTERS B, 1975, B 56 (05) :413-416
[4]  
COMBES JM, 1978, MATH PROBLEMS THEORE, V80, P183
[5]  
FADDEEV LD, 1965, MATH ASPECTS 3 BODY, pCH9
[6]  
Glockle W., 1970, Nuclear Physics A, V141A, P620, DOI 10.1016/0375-9474(70)90992-9
[7]  
HEPP K, 1969, HELV PHYS ACTA, V42, P425
[8]   ARRANGEMENT-CHANNEL QUANTUM-MECHANICS - GENERAL TIME-DEPENDENT FORMALISM FOR MULTIPARTICLE SCATTERING [J].
KOURI, DJ ;
KRUGER, H ;
LEVIN, FS .
PHYSICAL REVIEW D, 1977, 15 (04) :1156-1171
[9]   2-CLUSTER COUPLINGS AND UNIQUENESS OF MANY-PARTICLE SCATTERING INTEGRAL-EQUATIONS [J].
KOWALSKI, KL .
PHYSICAL REVIEW C, 1977, 16 (05) :2073-2074
[10]  
SANDHAS W, 1976, FEW BODY DYNAMICS, P540