POSSIBLE BARRIER AT Z-APPROXIMATE-TO-1 FOR LOCAL ALGORITHMS

被引:5
作者
BATHAS, G
NEUBERGER, H
机构
[1] Department of Physics and Astronomy, Rutgers University, Piscataway
来源
PHYSICAL REVIEW D | 1992年 / 45卷 / 10期
关键词
D O I
10.1103/PhysRevD.45.3880
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that a certain class of generalizations of overrelaxation algorithms is incapable of further reducing the dynamical exponent z below its standard overrelaxed value of z almost-equal-to 1. The mean-field value is unity and is obtained in a theory that is free in the static limit, while the effect of interactions and dimensionality could be estimated with dynamical renormalization-group methods. The generalizations are obtained by viewing overrelaxation as a slightly deformed deterministic algorithm and should, therefore, hold for hybrid Monte Carlo algorithms as well.
引用
收藏
页码:3880 / 3883
页数:4
相关论文
共 9 条
[1]  
Adler S. L., 1989, Nuclear Physics B, Proceedings Supplements, V9, P437, DOI 10.1016/0920-5632(89)90140-0
[2]   OVERRELAXATION ALGORITHMS FOR LATTICE FIELD-THEORIES [J].
ADLER, SL .
PHYSICAL REVIEW D, 1988, 37 (02) :458-471
[3]   OVERRELAXATION AND MONTE-CARLO SIMULATION [J].
CREUTZ, M .
PHYSICAL REVIEW D, 1987, 36 (02) :515-519
[4]   OVERRELAXATION AND MODE-COUPLING IN SIGMA-MODELS [J].
HELLER, UM ;
NEUBERGER, H .
PHYSICAL REVIEW D, 1989, 39 (02) :616-622
[5]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[6]  
KENNEDY A, 1991, NUCL PHYS B S, V20, P55
[7]  
Kennedy A. D., 1988, Nuclear Physics B, Proceedings Supplements, V4, P576, DOI 10.1016/0920-5632(88)90157-0
[8]   ADLER OVERRELAXATION ALGORITHM FOR GOLDSTONE BOSONS [J].
NEUBERGER, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (17) :1877-1880
[9]  
Sokal A. D., 1991, Nuclear Physics B, Proceedings Supplements, V20, P55, DOI 10.1016/0920-5632(91)90881-E