GEOMETRIC PHASE IN THE CLASSICAL CONTINUOUS ANTIFERROMAGNETIC HEISENBERG SPIN CHAIN

被引:123
作者
BALAKRISHNAN, R
BISHOP, AR
DANDOLOFF, R
机构
[1] UNIV CALIF LOS ALAMOS SCI LAB,DIV THEORET,LOS ALAMOS,NM 87545
[2] UNIV CALIF LOS ALAMOS SCI LAB,CTR NONLINEAR STUDIES,LOS ALAMOS,NM 87545
关键词
D O I
10.1103/PhysRevLett.64.2107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the time evolution of a space curve is associated with a geometric phase. This phase arises from the path dependence of the rotation of the natural Frenet-Serret triad with respect to a nonrotating (Fermi-Walker) frame. We derive a general expression in 1+1 dimension for the phase and the associated gauge potential, and discuss the application of this formalism to the classical, continuous, antiferromagnetic Heisenberg spin chain. © 1990 The American Physical Society.
引用
收藏
页码:2107 / 2110
页数:4
相关论文
共 20 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]  
BALAKRISHNAN R, 1982, J PHYS C SOLID STATE, V15, P1305
[3]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[5]   QUANTUM PHASE CORRECTIONS FROM ADIABATIC ITERATION [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 414 (1846) :31-46
[6]   PARALLEL TRANSPORT ALONG A SPACE CURVE AND RELATED PHASES [J].
DANDOLOFF, R ;
ZAKRZEWSKI, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (11) :L461-L466
[7]   BERRY PHASE AND FERMI-WALKER PARALLEL TRANSPORT [J].
DANDOLOFF, R .
PHYSICS LETTERS A, 1989, 139 (1-2) :19-20
[8]  
Eisenhart L. P., 1909, TREATISE DIFFERENTIA
[9]   MERON CONFIGURATIONS IN 2-DIMENSIONAL O(3) SIGMA-MODEL [J].
GROSS, DJ .
NUCLEAR PHYSICS B, 1978, 132 (05) :439-456