TOPOGRAPHIC DISTANCE AND WATERSHED LINES

被引:1002
作者
MEYER, F
机构
[1] Centre de Morphologie Mathématique, 77305 Fontainebleau
关键词
TOPOGRAPHIC DISTANCE; WATERSHED LINE; SEGMENTATION; SHORTEST PATH ALGORITHMS; MATHEMATICAL MORPHOLOGY;
D O I
10.1016/0165-1684(94)90060-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The watershed line is the basic tool for segmenting images in mathematical morphology. A rigorous definition is given in terms of a distance function called topographic distance. If the topographical function is itself a distance function, then the topographical distance becomes identical with the geodesic distance function and the watershed becomes identical with the skeleton by zone of influence. The classical shortest paths algorithms of the graph theory are then revisited in order to derive new watershed algorithms, which are either new or more easy to implement in hardware.
引用
收藏
页码:113 / 125
页数:13
相关论文
共 13 条
[1]  
Berge, Théorie des graphes et ses applications, (1958)
[2]  
Beucher, Segmentation d'images et morphologie mathématique, Thése Ecole des Mines, (1990)
[3]  
Beucher, Lantuejoul, Use of watersheds in contour detection, Proc. Workshop on Image Processing, CCETT/IRISA, pp. 2.1-2.12, (1979)
[4]  
Borgefors, Distance transformations in digital images, CVGIP, 14, pp. 227-248, (1980)
[5]  
Gondran, Minoux, Graphes et algorithmes, pp. 65-101, (1979)
[6]  
Meyer, Un algorithme optimal de ligne de partage des eaux, Actes du 8éme Congres AFCET, pp. 847-859, (1991)
[7]  
Meyer, Integrals and gradients of images, Proc. SPIE Image Algebra and Morphological Image Processing III, San Diego, CA, 1769, pp. 200-211, (1992)
[8]  
Meyer, Integrals, gradients and watershed lines, Proc. Mathematical Morphology and its Applications to Signal Processing, pp. 70-75, (1993)
[9]  
Meyer, Beucher, Morphological segmentation, JVCIP, 1, 1, pp. 21-46, (1990)
[10]  
Moore, The shortest path through a maze, Proc. Internat. Symp. on Theory of Switching, 30, pp. 285-292, (1959)