ASYMPTOTIC-BEHAVIOR OF EIGENVALUES AND RANDOM UPDATING SCHEMES

被引:4
作者
CHIANG, TS
CHOW, YS
机构
[1] Institute of Mathematics, Academia Sinica, Taipei
关键词
W-GRAPH; CYCLES; METROPOLIS ALGORITHM; GIBBS SAMPLER;
D O I
10.1007/BF01200381
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a stochastic matrix (Q(ij)T)i,j=1M with Q(ij)T is similar to exp(-U(ij)/T) at the off-diagonal positions, we develop an algorithm to evaluate the asymptotic convergence rate of all eigenvalues of Q(ij)T as T down 0 using Ventcel's optimal graphs. As an application we can compare the convergence rates of some random updating schemes used in image processing.
引用
收藏
页码:259 / 275
页数:17
相关论文
共 11 条
[1]   COMPARING SWEEP STRATEGIES FOR STOCHASTIC RELAXATION [J].
AMIT, Y ;
GRENANDER, U .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 37 (02) :197-222
[2]  
[Anonymous], 1992, ANN APPL PROBAB
[3]  
BARONE P, 1988, IMPROVING STOCHASTIC
[4]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[5]  
BINDER K, 1978, MONTE CARLO METHODS
[6]  
FRIGESSI A, 1993, J R STAT SOC B, V55, P205
[7]  
GEMAN D, 1990, LECTURE NOTES MATH, V1427
[8]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[9]  
Stein C, 2001, INTRO ALGORITHMS 2 V, Vsecond
[10]   FINDING OPTIMUM BRANCHINGS [J].
TARJAN, RE .
NETWORKS, 1977, 7 (01) :25-35