BASIN BIFURCATIONS OF 2-DIMENSIONAL NONINVERTIBLE MAPS - FRACTALIZATION OF BASINS

被引:91
作者
MIRA, C
FOURNIERPRUNARET, D
GARDINI, L
KAWAKAMI, H
CATHALA, JC
机构
[1] UNIV MACERATA,IST ECON & FINANSA,MACERATA,ITALY
[2] UNIV URBINO,I-61029 URBINO,ITALY
[3] UNIV TOKUSHIMA,DEPT ELECT ENGN,TOKUSHIMA 770,JAPAN
[4] UNIV PROVENCE,DEPT AUTOMAT,F-13013 MARSEILLE,FRANCE
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1994年 / 4卷 / 02期
关键词
D O I
10.1142/S0218127494000241
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Properties of the basins of noninvertible maps of a plane are studied using the method of critical curves. Different kinds of basin bifurcation, some of them leading to basin boundary fractalization are described. More particularly the paper considers the simplest class of maps that of a phase plane which is made up of two regions, one with two preimages, the other with no preimage.
引用
收藏
页码:343 / 381
页数:39
相关论文
共 31 条
[1]  
ADOMAITIS RA, 1992, 1992 AM CONTR C CHIC
[2]  
Adomaitis RA, 1991, J NONLINEAR SCI, V1, P95
[3]   ANNULAR CHAOTIC AREAS [J].
BARUGOLA, A ;
CATHALA, JC ;
MIRA, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (11) :1223-1236
[4]  
BARUGOLA A, 1992, SEP ECIT EUR C IT TH
[5]   DYNAMIC COMPLEXITY IN PREDATOR-PREY MODELS FRAMED IN DIFFERENCE EQUATIONS [J].
BEDDINGTON, JR ;
FREE, CA ;
LAWTON, JH .
NATURE, 1975, 255 (5503) :58-60
[6]  
BERNUSSOU J, 1976, SEP TRANSF PONCT APP
[7]   SINGULAR POINTS WITH TWO MULTIPLIERS, S-1=-S-2=1, IN THE BIFURCATION CURVES OF MAPS [J].
Cathala, J. C. ;
Kawakami, H. ;
Mira, C. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :1001-1004
[8]   MULTICONNECTED CHAOTIC AREAS IN 2ND-ORDER ENDOMORPHISMS [J].
CATHALA, JC .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1990, 21 (05) :863-887
[9]  
CATHALA JC, 1989, SEP ECIT BATS P
[10]  
DELLIGATTI D, 1993, IN PRESS J EC BEHAVI