DEPENDENCE OF THE DIFFUSION-COEFFICIENT ON THE ENERGY-DISTRIBUTION OF RANDOM BARRIERS

被引:32
作者
ARGYRAKIS, P
MILCHEV, A
PEREYRA, V
KEHR, KW
机构
[1] BULGARIAN ACAD SCI, INST PHYS CHEM, BU-1040 SOFIA, BULGARIA
[2] UNIV NACL SAN LUIS CHACABUCO & PEDERNERA, INTEQUI, RA-5700 SAN LUIS, ARGENTINA
[3] FORSCHUNGSZENTRUM JULICH, FORSCHUNGSZENTRUM, INST FESTKORPERFORSCH, D-52425 JULICH, GERMANY
关键词
D O I
10.1103/PhysRevE.52.3623
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study hopping transport of particles in the presence of randomly distributed energy barriers for diffusion. Exponential, Gaussian, and uniform distributions of barrier heights on square and simple-cubic lattices are investigated to uncover the influence of the form and width of the distributions. The temperature dependence of the characteristic time separating the initial regime of anomalous diffusion from the long-time normal diffusion is of Arrhenius form with an effective activation energy determined by the percolation threshold of the corresponding lattice. Our analytic results, derived within the framework of effective medium approximation, show that the asymptotic diffusion coefficient does not depend on the degree of disorder on a square lattice whereas on a cubic lattice it does. These predictions are confirmed by numerical simulations. The temperature dependence of the diffusion coefficient is also determined by the coordination number z of the lattice for ''static'' barrier disorder. On a square lattice it is of Arrhenius form and for z not equal 4 it deviates from it with increasing degree of disorder. It is always non-Arrhenian in the case of dynamically changing disorder.
引用
收藏
页码:3623 / 3631
页数:9
相关论文
共 20 条
[1]   ASYMPTOTIC DIFFUSION-COEFFICIENT OF PARTICLES IN A RANDOM MEDIUM [J].
AMBAYE, H ;
KEHR, KW .
PHYSICAL REVIEW E, 1995, 51 (05) :5101-5102
[2]   HOPPING CONDUCTIVITY IN DISORDERED SYSTEMS [J].
AMBEGAOKAR, V ;
HALPERIN, BI ;
LANGER, JS .
PHYSICAL REVIEW B-SOLID STATE, 1971, 4 (08) :2612-+
[3]   EFFECT OF DISORDER ON DIFFUSION AND VISCOSITY IN CONDENSED SYSTEMS [J].
AVRAMOV, I ;
MILCHEV, A .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1988, 104 (2-3) :253-260
[4]   DIFFUSION IN A RANDOM MEDIUM - A MONTE-CARLO STUDY [J].
AVRAMOV, I ;
MILCHEV, A ;
ARGYRAKIS, P .
PHYSICAL REVIEW E, 1993, 47 (04) :2303-2307
[5]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[6]  
GARTNER P, COMMUNICATION
[7]   DIFFUSION IN REGULAR AND DISORDERED LATTICES [J].
HAUS, JW ;
KEHR, KW .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 150 (5-6) :263-406
[8]   A PHASE-TRANSITION IN THE DYNAMICS OF AN EXACT MODEL FOR HOPPING TRANSPORT [J].
HAVLIN, S ;
TRUS, BL ;
WEISS, GH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13) :L817-L822
[9]   DIFFUSION IN DISORDERED MEDIA [J].
HAVLIN, S ;
BENAVRAHAM, D .
ADVANCES IN PHYSICS, 1987, 36 (06) :695-798
[10]  
HORNER A, IN PRESS PHYS REV E