LAX EQUATIONS AND QUANTUM GROUPS

被引:20
作者
MAILLET, JM
机构
[1] CERN
关键词
D O I
10.1016/0370-2693(90)90677-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct Lax equations associated to quantum groups. In particular we derive quantum trace formulas for the Lax matrix L giving the quantum analogue of its usual classical invariants generated by tr(Ln). These quantities generate an abelian subalgebra of the quantum group and define hamiltonian flows that admit quantum Lax representations. This hierarchy of quantum Lax equations is shown to verify zero-curvature relations. In the field theory case we give the lattice construction of these quantum structures. © 1990.
引用
收藏
页码:480 / 486
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 1985, SOVIET MATH DOKL
[2]   PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL [J].
BAXTER, RJ .
ANNALS OF PHYSICS, 1972, 70 (01) :193-&
[3]  
Drinfeld V.G., 1983, SOVIET MATH DOKL, V27, P68
[4]  
DRINFELD VG, 1987, 1986 P INT C MATH BE, P798
[5]  
Faddeev L.D., 1987, HAMILTONIAN METHODS
[6]  
FADDEEV LD, 1983, RECENT DEV FIELD THE
[7]  
FADDEEV LD, LOMI E1487 PREPR
[8]  
Izergin A. G., 1981, Soviet Physics - Doklady, V26, P653
[9]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
[10]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69