CHAIN END DIFFUSION IN FLEXIBLE MOLECULES

被引:2
作者
EVANS, GT
机构
[1] Department of Chemistry, Oregon State University, Corvallis, OR
基金
美国国家科学基金会;
关键词
D O I
10.1080/00268977900102341
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Starting with the equations of motion for a stiff chain, a projection operator approach is utilized to develop diffusional equations for the dynamics of the end-to-end distance. The diffusion equation resulting has a spatial-dependent diffusion coefficient calculable from equilibrium properties of the chain, and a frequency-dependent part which requires dynamical information. The analysis is applied, in so far as the spatial dependence of D is determined, for three and four bond chains. A critique of this procedure is provided. © 1979 Taylor & Francis Ltd.
引用
收藏
页码:1201 / 1210
页数:10
相关论文
共 15 条
[1]   COMPUTER-SIMULATION OF DYNAMICS OF A SINGLE POLYMER-CHAIN [J].
CEPERLEY, D ;
KALOS, MH ;
LEBOWITZ, JL .
PHYSICAL REVIEW LETTERS, 1978, 41 (05) :313-316
[2]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[3]   DETERMINATION OF AVERAGE SINGLET-TRIPLET SPLITTING IN BIRADICALS BY MEASUREMENT OF MAGNETIC-FIELD DEPENDENCE OF CIDNP [J].
CLOSS, GL ;
DOUBLEDA.CE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1973, 95 (08) :2735-2736
[4]   ORIENTATIONAL DYNAMICS OF NON-RIGID THREE-BOND CHAINS [J].
EVANS, GT .
MOLECULAR PHYSICS, 1978, 36 (04) :1199-1216
[5]   MODIFIED FOKKER-PLANCK EQUATIONS .1. TRANSLATIONAL MOTION IN DENSE FLUIDS [J].
EVANS, GT .
MOLECULAR PHYSICS, 1978, 36 (01) :49-63
[7]  
EVANS GT, J CHEM PHYS
[8]   POLYMER CONFORMATIONAL STATISTICS .2. CHARACTERISTIC FUNCTION OF ROTATIONAL-ISOMERIC MODEL [J].
FIXMAN, M .
JOURNAL OF CHEMICAL PHYSICS, 1973, 58 (04) :1559-1563
[9]   SIMULATION OF POLYMER DYNAMICS .1. GENERAL THEORY [J].
FIXMAN, M .
JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (04) :1527-1537
[10]   SIMULATION OF POLYMER DYNAMICS .2. RELAXATION RATES AND DYNAMIC VISCOSITY [J].
FIXMAN, M .
JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (04) :1538-1545