NOVEL AEROBIC 2-AMINOBENZOATE METABOLISM - NUCLEOTIDE-SEQUENCE OF THE PLASMID CARRYING THE GENE FOR THE FLAVOPROTEIN 2-AMINOBENZOYL-COA MONOOXYGENASE REDUCTASE IN A DENITRIFYING PSEUDOMONAS-SP

被引:12
作者
ALTENSCHMIDT, U [1 ]
BOKRANZ, M [1 ]
FUCHS, G [1 ]
机构
[1] UNIV ULM,ANGEW MIKROBIOL ABT,POSTFACH 4066,W-7900 ULM,GERMANY
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 1992年 / 207卷 / 02期
关键词
D O I
10.1111/j.1432-1033.1992.tb17100.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pseudomonas KB 740 degrades 2-aminobenzoate aerobically via a chimeric pathway which combines characteristics of anaerobic and aerobic aromatic metabolism. Atypically, 2-aminobenzoyl-CoA is an intermediate, and the activated aromatic acid is not only hydroxylated but also reduced to an alicyclic compound in a single step. The bacterial strain posseses a small plasmid, pKB 740, which carries all essential information of this new pathway. Its total nucleotide sequence was determined. It consists of 8280 bp and contains the genes for the two initial enzymes of the pathway; 2-aminobenzoate-CoA ligase catalyzes the activation of the aromatic acid, and the flavoenzyme 2-aminobenzoyl-CoA monooxygenase/reductase catalyzes the hydroxylation (monooxygenase activity) and subsequent reduction (reductase activity) of the aromatic ring of 2-aminobenzoyl-CoA. Furthermore, five open reading frames (ORF) possibly coding for polypeptides are on the plasmid. Putative promoter sequences were found for two of the ORF. A nucleotide sequence able to form a possible termination loop was located downstream of the gene for 2-aminobenzoyl-CoA monooxygenase/reductase. This gene consists of 2190 bases. The deduced amino acid sequence of the protein (730 residues; calculated molecular mass of the native 729-residue protein, 83 559 Da) contains a consensus sequence for an FAD-binding site at the N-terminus and a possible NAD(P)H-binding site approximately 150 amino acid residues apart from the N-terminus. The monooxygenase/reductase shows low sequence similarity to the flavoprotein salicylate hydroxylase. Functional and evolutionary aspects of this work are discussed.
引用
收藏
页码:715 / 722
页数:8
相关论文
共 39 条