DISCRETE-TIME HIGH-ORDER SCHEMES FOR VISCOSITY SOLUTIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS

被引:88
作者
FALCONE, M [1 ]
FERRETTI, R [1 ]
机构
[1] UNIV ROMA TOR VERGATA,DIPARTIMENTO MATEMAT,I-00133 ROME,ITALY
关键词
D O I
10.1007/s002110050031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general method for constructing high-order approximation schemes for Hamilton-Jacobi-Bellman equations is given. The method is based on a discrete version of the Dynamic Programming Principle. We prove a general convergence result for this class of approximation schemes also obtaining, under more restrictive assumptions, an estimate in L(infinity) of the order of convergence and of the local truncation error. The schemes can be applied, in particular, to the stationary linear first order equation in R(n). We present several examples of schemes belonging to this class and with fast convergence to the solution.
引用
收藏
页码:315 / 344
页数:30
相关论文
共 19 条
[1]  
[Anonymous], 1992, NUMERICAL METHODS CO
[2]   AN APPROXIMATION SCHEME FOR THE MINIMUM TIME FUNCTION [J].
BARDI, M ;
FALCONE, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (04) :950-965
[3]  
BARDI M, 1990, LECT NOTES CONTR INF, V144, P103
[4]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[5]  
BRENIER Y, 1989, CR ACAD SCI I-MATH, V308, P587
[6]  
CORRIAS L, 1992, TRANSFORMEES LEGENDR
[7]  
Crouzeix M, 1989, ANAL NUMERIQUE EQUAT
[8]  
DEROQUEFORT BA, 1991, RAIRO-MATH MODEL NUM, V25, P535
[9]   APPROXIMATE SOLUTIONS OF THE BELLMAN EQUATION OF DETERMINISTIC CONTROL-THEORY [J].
DOLCETTA, IC ;
ISHII, H .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 11 (02) :161-181
[10]   ON A DISCRETE APPROXIMATION OF THE HAMILTON-JACOBI EQUATION OF DYNAMIC-PROGRAMMING [J].
DOLCETTA, IC .
APPLIED MATHEMATICS AND OPTIMIZATION, 1983, 10 (04) :367-377