FIXED EDGE-LENGTH GRAPH DRAWING IS NP-HARD

被引:30
作者
EADES, P [1 ]
WORMALD, NC [1 ]
机构
[1] UNIV AUCKLAND, DEPT MATH, AUCKLAND, NEW ZEALAND
关键词
2-connected graph; Computational geometry; graph layout; planar graph;
D O I
10.1016/0166-218X(90)90110-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of drawing a graph with prescribed edge lengths such that edges do not cross is proved NP-hard, even in the case where all edge lengths are one and the graph is 2-connected. The proof is an interesting interplay of geometry and combinatorics. First we use geometrical methods to transform a rather synthetic "Orientation Problem" to our graph drawing problem; then we use combinatorial methods to transform a well-known "Flow Problem" to the orientation problem. © 1990.
引用
收藏
页码:111 / 134
页数:24
相关论文
共 17 条
[1]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[2]   TESTING FOR CONSECUTIVE ONES PROPERTY, INTERVAL GRAPHS, AND GRAPH PLANARITY USING PQ-TREE ALGORITHMS [J].
BOOTH, KS ;
LUEKER, GS .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1976, 13 (03) :335-379
[3]   A LINEAR ALGORITHM FOR EMBEDDING PLANAR GRAPHS USING PQ-TREES [J].
CHIBA, N ;
NISHIZEKI, T ;
ABE, S ;
OZAWA, T .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1985, 30 (01) :54-76
[4]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174
[5]   EFFICIENT PLANARITY TESTING [J].
HOPCROFT, J ;
TARJAN, R .
JOURNAL OF THE ACM, 1974, 21 (04) :549-568
[6]   THE NP-COMPLETENESS COLUMN - AN ONGOING GUIDE [J].
JOHNSON, DS .
JOURNAL OF ALGORITHMS, 1984, 5 (01) :147-160
[7]  
JOHNSON TH, 1982, CLIN CHEST MED, V3, P89
[8]  
Papadimitriou C. H., 1998, COMBINATORIAL OPTIMI
[9]  
Reingold E. M., 1977, COMBINATORIAL ALGORI
[10]  
SAXE JB, 1980, CMUCS80102 CARN U DE