CONSTRAINED LATENT CLASS ANALYSIS - SIMULTANEOUS CLASSIFICATION AND SCALING OF DISCRETE CHOICE DATA

被引:22
作者
BOCKENHOLT, U
BOCKENHOLT, I
机构
[1] Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, 61820, IL
关键词
LATENT CLASS ANALYSIS; MULTIDIMENSIONAL SCALING; CLASSIFICATION;
D O I
10.1007/BF02294500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A reparameterization of a latent class model is presented to simultaneously classify and scale nominal and ordered categorical choice data. Latent class-specific probabilities are constrained to be equal to the preference probabilities from a probabilistic ideal-point or vector model that yields a graphical, multidimensional representation of the classification results. In addition, background variables can be incorporated as an aid to interpreting the latent class-specific response probabilities. The analyses of synthetic and real data sets illustrate the proposed method.
引用
收藏
页码:699 / 716
页数:18
相关论文
共 36 条
[1]   STATISTICAL MODELING OF DATA ON TEACHING STYLES [J].
AITKIN, M ;
ANDERSON, D ;
HINDE, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1981, 144 :419-461
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
ANDERSON JA, 1984, J R STAT SOC B, V46, P1
[4]  
Bartholomew D. J., 1987, LATENT VARIABLE MODE
[5]   MARGINAL MAXIMUM-LIKELIHOOD ESTIMATION OF ITEM PARAMETERS - APPLICATION OF AN EM ALGORITHM [J].
BOCK, RD ;
AITKIN, M .
PSYCHOMETRIKA, 1981, 46 (04) :443-459
[6]   MULTIVARIATE THURSTONIAN MODELS [J].
BOCKENHOLT, U .
PSYCHOMETRIKA, 1990, 55 (02) :391-403
[7]  
CAROLL JD, 1980, SIMILARITY CHOICE, P234
[8]  
CLOGG CC, 1982, J AM STAT ASS, V0077
[9]  
Coombs Clyde H., 1964, THEORY DATA
[10]  
Dayton C. M., 1988, LATENT TRAIT LATENT, P129, DOI [10.1007/978-1-4757-5644-9_7, DOI 10.1007/978-1-4757-5644-9_7]