ENERGY-SPECTRUM OF THE POTENTIAL V = AX2 + X4

被引:15
作者
CHHAJLANY, SC
LETOV, DA
MALNEV, VN
机构
[1] MOSCOW PEOPLES FRIENDSHIP UNIV,DEPT GEN PHYS,MOSCOW,USSR
[2] TG SHEVCHENKO STATE UNIV,DEPT PHYS,KIEV,UKRAINE,USSR
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 12期
关键词
D O I
10.1088/0305-4470/24/12/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Suitable sequences of quasi-exactly solvable Hamiltonians are shown to provide stringent upper bounds to the energy eigenvalues of the bound state potential V = ax2 + x4. Procedures to convert these bounds into even further improved energy estimates are developed. For the quartic anharmonic oscillator (a > 0) case a simple argument is provided to indicate that the conventional small-parameter energy expansion does not converge as a Taylor series. An accurate closed-form parametrization of the entire quartic (a = 0) spectrum is noted. The energy difference between the lowest-lying levels of a quartic double well (a < 0) is satisfactorily recovered and for deep wells a useful expression is deduced for it empirically.
引用
收藏
页码:2731 / 2741
页数:11
相关论文
共 23 条
[1]   ANHARMONIC-OSCILLATOR [J].
BANERJEE, K ;
BHATNAGAR, SP ;
CHOUDHRY, V ;
KANWAL, SS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 360 (1703) :575-586
[2]   LOWER BOUNDS FOR EIGENVALUES OF SCHRODINGERS EQUATION [J].
BAZLEY, NW ;
FOX, DW .
PHYSICAL REVIEW, 1961, 124 (02) :483-&
[3]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[4]   HYDROGENIC ATOMS IN THE EXTERNAL POTENTIAL V(R)=GR+LAMBDA-R(2) - EXACT-SOLUTIONS AND GROUND-STATE EIGENVALUE BOUNDS USING MOMENT METHODS [J].
BESSIS, D ;
VRSCAY, ER ;
HANDY, CR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02) :419-428
[5]   EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS [J].
BISWAS, SN ;
DATTA, K ;
SAXENA, RP ;
SRIVASTAVA, PK ;
VARMA, VS .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1190-1195
[6]   SIMPLE EXAMPLES IN SINGULAR PERTURBATION-THEORY - EIGENVALUES THAT DO NOT TEND TO THE UNPERTURBED VALUES AS THE PERTURBATION IS SWITCHED OFF [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1979, 25 (17) :533-538
[7]   BOUND-STATES OF ANHARMONIC POTENTIALS [J].
CHHAJLANY, SC ;
MALNEV, VN .
PHYSICAL REVIEW A, 1990, 42 (05) :3111-3114
[8]  
CHHAJLANY SC, 1991, PHYS REV A, V43, P581
[9]   EXACT ANALYTIC SOLUTIONS FOR THE QUANTUM-MECHANICAL SEXTIC ANHARMONIC-OSCILLATOR [J].
DUTTA, AK ;
WILLEY, RS .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) :892-900
[10]   TIGHT UPPER AND LOWER BOUNDS FOR ENERGY EIGENVALUES OF THE SCHRODINGER-EQUATION [J].
FERNANDEZ, FM ;
MA, Q ;
TIPPING, RH .
PHYSICAL REVIEW A, 1989, 39 (04) :1605-1609