共 17 条
ON NONLINEAR RANDOM EFFECTS MODELS FOR REPEATED MEASUREMENTS
被引:37
作者:
HIRST, K
[1
]
BOYLE, DW
[1
]
ZERBE, GO
[1
]
WILKENING, RB
[1
]
机构:
[1] UNIV COLORADO,SCH MED,DENVER,CO 80206
基金:
美国国家卫生研究院;
关键词:
NONLINEAR MIXED EFFECTS MODEL;
EM ALGORITHM;
LONGITUDINAL DATA;
STOCHASTIC PARAMETERS;
D O I:
10.1080/03610919108812966
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Linear random effects models for longitudinal data discussed by Laird and Ware (1982), Jennrich and Schluchter (1986), Lange and Laird (1989), and others are extended in a straight forward manner to nonlinear random effects models. This results in a simple computational approach which accommodates patterned covariance matrices and data insufficient for fitting each subject separately. The technique is demonstrated with an interesting medical data set, and a short, simple SAS PROC IML program based on the EM algorithm is presented.
引用
收藏
页码:463 / 478
页数:16
相关论文