ON THE RANDOM VECTOR POTENTIAL MODEL IN 2 DIMENSIONS

被引:18
作者
BERNARD, D
机构
关键词
D O I
10.1016/0550-3213(95)00095-A
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The random vector potential model describes massless fermions coupled to a quenched random gauge field. We study its abelian and non-abelian versions, The abelian version can be completely solved using bosonization. We analyse the non-abelian model using its supersymmetric formulation and show, by a perturbative renormalization group computation, that it is asymptotically free at large distances. We also show that all the quenched chiral current correlation functions can be computed exactly, without using the replica trick or the supersymmetric formulation, but using an exact expression for the effective action for any sample of the random gauge field. These chiral correlation functions are purely algebraic.
引用
收藏
页码:471 / 482
页数:12
相关论文
共 16 条
[1]   NEW DUAL QUARK MODELS [J].
BARDAKCI, K ;
HALPERN, MB .
PHYSICAL REVIEW D, 1971, 3 (10) :2493-&
[2]  
BERNARD D, UNPUB SIMPLE EXAMPLE
[3]  
CHAMON CD, CONDMAT9501066 PREPR
[4]   CRITICAL-BEHAVIOR OF THE PHASE-TRANSITION IN THE 2D ISING-MODEL WITH IMPURITIES [J].
DOTSENKO, VS ;
DOTSENKO, VS .
ADVANCES IN PHYSICS, 1983, 32 (02) :129-172
[5]   VORTEX-GLASS SUPERCONDUCTIVITY - A POSSIBLE NEW PHASE IN BULK HIGH-TC OXIDES [J].
FISHER, MPA .
PHYSICAL REVIEW LETTERS, 1989, 62 (12) :1415-1418
[6]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
[7]   SIZE-DEPENDENT ANALYSIS OF THE METAL-INSULATOR-TRANSITION IN THE INTEGRAL QUANTUM HALL-EFFECT [J].
KOCH, S ;
HAUG, RJ ;
VONKLITZING, K ;
PLOOG, K .
PHYSICAL REVIEW LETTERS, 1991, 67 (07) :883-886
[9]   PERTURBATIVE EVALUATION OF THE CONFORMAL ANOMALY AT NEW CRITICAL-POINTS WITH APPLICATIONS TO RANDOM-SYSTEMS [J].
LUDWIG, AWW ;
CARDY, JL .
NUCLEAR PHYSICS B, 1987, 285 (04) :687-718
[10]   INTEGER QUANTUM HALL TRANSITION - AN ALTERNATIVE APPROACH AND EXACT RESULTS [J].
LUDWIG, AWW ;
FISHER, MPA ;
SHANKAR, R ;
GRINSTEIN, G .
PHYSICAL REVIEW B, 1994, 50 (11) :7526-7552