THE INTERACTION OF DNA DUPLEXES CONTAINING 2-AMINOPURINE WITH RESTRICTION ENDONUCLEASES ECORII AND SSOII

被引:17
作者
PETRAUSKENE, OV
SCHMIDT, S
KARYAGINA, AS
NIKOLSKAYA, II
GROMOVA, ES
CECH, D
机构
[1] HUMBOLDT UNIV BERLIN,INST CHEM,D-10099 BERLIN,GERMANY
[2] MOSCOW MV LOMONOSOV STATE UNIV,DEPT CHEM,MOSCOW 119899,RUSSIA
[3] INST BIOMED CHEM,MOSCOW 119121,RUSSIA
[4] MOSCOW MV LOMONOSOV STATE UNIV,AN BELOZERSKY INST PHYSICOCHEM BIOL,MOSCOW 119899,RUSSIA
关键词
D O I
10.1093/nar/23.12.2192
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oligonucleotides containing 2-aminopurine (2-AP) in place of G or A in the recognition site of EcoRII (CCT/AGG) or Ssoll (CCNGG) restriction endonucleases have been synthesized in order to investigate the specific interaction of DNA with these enzymes. Physicochemical properties (CD spectra and melting behaviour) have shown that DNA duplexes containing 2-aminopurine exist largely in a stable B-like form. 2-Aminopurine base paired with cytidine, however, essentially influences the helix structure. The presence of a 2-AP . C mismatch strongly reduces the stability of the duplexes in comparison with the natural double strand, indicated by a biphasic melting behaviour. Ssoll restriction endonuclease recognizes and cleaves the modified substrate with a 2-AP . T mismatch in the centre of the recognition site, but it does not cleave the duplexes containing 2-aminopurine in place of inner and outer G, or both. EcoRII restriction endonuclease does not cleave duplexes containing 2-aminopurine at all. The two-substrate mechanism of EcoRII-DNA interaction, however, allows hydrolysis of the duplex containing 2-aminopurine in place of adenine in the presence of the canonical substrate.
引用
收藏
页码:2192 / 2197
页数:6
相关论文
共 25 条
[1]  
Brennan C.A., Van Cleve M.D., Gumportd L.I., J. Biol. Chem, 261, pp. 7270-7278, (1986)
[2]  
Fliess A., Wolfes H., Seela X., Pingout L.A., Nucleic Acids Res., 16, pp. 11781-11793, (1988)
[3]  
Mazartlli J., Scholtissek S., Mc Laughlin X.-W., Biochemistry, 28, pp. 4616-4622, (1989)
[4]  
Newman P.C., Nwosu V.U., Williams D.M., Cosstick R., Seela X., Conolly B.A., Biochemistry, 29, pp. 9891-9901, (1990)
[5]  
Gromova X.-S., Kubareva X.-A., Vinogradova J.V., Oretskaya I., Shabarova X.-A., J. Mol Recognition, 4, pp. 133-141, (1991)
[6]  
Mc Clarin J.A., Frederick C.A., Wang B.C., Greene J., Boyerjd W., Gruble J., Rosen Berg J.M., Science, 234, pp. 1526-1541, (1986)
[7]  
Kriiger D.H., Barcak G.L., Reuter J., Smithd I.O., Nucleic Acids Res., 16, pp. 3997-4008, (1988)
[8]  
Pein C.-D., Reuter J., Cechd X., Krueger D.H., FEBS Lett, 245, pp. 141-144, (1989)
[9]  
Petrauskene O.V., Knhaneva F.A., Gromova E.S., Shabarova X.-A., Eur. J. Biochem, 208, pp. 617-622, (1992)
[10]  
Gabbara S., Bhagwau A.S., J. BioL Chem., 267, pp. 18623-18630, (1992)