1. Lobster muscles contain a latent multicatalytic proteinase; heating at 60-degrees-C for 1-2 min converts the latent form to a heat-activated form with enhanced proteolytic activity. Both forms have three endopeptidase activities, which are classified as the trypsin-like, chymotrypsin-like, and peptidylglutamylpeptide bond hydrolyzing activities. 2. Sulfhydryl reagents (mersalyl acid, N-ethylmaleimide, hemin, iodacetamide, and p-chloromercurisulfonic acid), benzamidine, and chloromethyl ketones inhibited all three activities of the heat-activated form. Leupeptin and antipain inhibited only the trypsin-like activity, while the chymotrypsin-like activity was the most sensitive to diisopropyl fluorophosphate, phenylmethanesulfonyl fluoride, aprotinin, and soybean trypsin inhibitor. Pepstatin and L-trans-epoxysuccinylpeptides had little effect on the peptidase activities. 3. Sodium dodecyl sulfate and oleic acid preferentially activated the peptidylglutamyl-peptide hydrolyzing activity of the latent form, whereas N-ethylmaleimide stimulated both the trysin-like and peptidylglutamyl-peptide hydrolases. These results suggest that the lobster enzyme is an atypical serine proteinase.