WAVELET SPECTRA COMPARED TO FOURIER SPECTRA

被引:136
作者
PERRIER, V [1 ]
PHILIPOVITCH, T [1 ]
BASDEVANT, C [1 ]
机构
[1] UNIV PARIS 13,ANALYSE GEOMETRIE & APPLICAT LAB,F-93430 VILLETANEUSE,FRANCE
关键词
D O I
10.1063/1.531340
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relation between Fourier spectra and spectra obtained from wavelet analysis is established. Small scale asymptotic analysis shows that the wavelet spectrum is meaningful only when the analyzing wavelet has enough vanishing moments. These results are related to regularity theorems in Besov spaces. For the analysis of infinitely regular signals, a new wavelet, with an infinite number of cancellations is proposed. © 1995 American Institute of Physics.
引用
收藏
页码:1506 / 1519
页数:14
相关论文
共 18 条
  • [1] BASDEVANT C, 1993, VORTEX FLOWS RELATED, P1
  • [2] Bender C. M., 1999, ADV MATH METHODS SCI, VI
  • [3] DAUBECHIES I, 1992, CBMS NBSF REGIONAL C
  • [4] WAVELET ANALYSIS OF 2D TURBULENT FIELDS
    DOKHAC, M
    BASDEVANT, C
    PERRIER, V
    DANGTRAN, K
    [J]. PHYSICA D, 1994, 76 (1-3): : 252 - 277
  • [5] FARGE M, 1992, ANNU REV FLUID MECH, V40, P395
  • [6] DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE
    GROSSMANN, A
    MORLET, J
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) : 723 - 736
  • [7] POINTWISE ANALYSIS OF RIEMANN NONDIFFERENTIABLE FUNCTION
    HOLSCHNEIDER, M
    TCHAMITCHIAN, P
    [J]. INVENTIONES MATHEMATICAE, 1991, 105 (01) : 157 - 175
  • [8] JAFFARD S, 1989, CR ACAD SCI I-MATH, V308, P79
  • [9] JAFFARD S, 1993, MULTIFRACTAL FORMALI
  • [10] ANALYSIS OF TURBULENCE IN THE ORTHONORMAL WAVELET REPRESENTATION
    MENEVEAU, C
    [J]. JOURNAL OF FLUID MECHANICS, 1991, 232 : 469 - 520