DYNAMIC EXPONENTS FOR ONE-DIMENSIONAL RANDOM RANDOM DIRECTED WALKS

被引:27
作者
ASLANGUL, C
BARTHELEMY, M
POTTIER, N
STJAMES, D
机构
[1] UNIV PARIS 06,F-75252 PARIS 05,FRANCE
[2] COLL FRANCE,F-75231 PARIS 05,FRANCE
关键词
Brownian motion; disordered media; random walks;
D O I
10.1007/BF01015561
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamical exponents of the coordinate and of the mean square displacement are explicitly calculated in the case of a directed random walk on a one-dimensional random lattice. Moreover, it is shown that, in the dynamical phase where the coordinate increases slower than t, the latter is not a self-averaging quantity. © 1990 Plenum Publishing Corporation.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 10 条
  • [1] EXCITATION DYNAMICS IN RANDOM ONE-DIMENSIONAL SYSTEMS
    ALEXANDER, S
    BERNASCONI, J
    SCHNEIDER, WR
    ORBACH, R
    [J]. REVIEWS OF MODERN PHYSICS, 1981, 53 (02) : 175 - 198
  • [2] CORRECTION
    ASLANGUL, C
    [J]. JOURNAL DE PHYSIQUE, 1989, 50 (12): : 1581 - 1581
  • [3] VELOCITY AND DIFFUSION-COEFFICIENT OF A RANDOM ASYMMETRIC ONE-DIMENSIONAL HOPPING MODEL
    ASLANGUL, C
    POTTIER, N
    SAINTJAMES, D
    [J]. JOURNAL DE PHYSIQUE, 1989, 50 (08): : 899 - 921
  • [4] ASLANGUL C, IN PRESS PHYSICA A
  • [5] ASLANGUL C, 1989, J STAT PHYS, V55, P1065
  • [6] BERNASCONI J, 1986, FRACTALS PHYSICS
  • [7] BOUCHAUD JP, UNPUB ANN PHYS
  • [8] BOUCHAUD JP, UNPUB PHYS REP
  • [10] Gardiner C.W., 1985, HDB STOCHASTIC METHO