A PARALLEL PRECONDITIONED CONJUGATE-GRADIENT METHOD USING DOMAIN DECOMPOSITION AND INEXACT SOLVERS ON EACH SUBDOMAIN

被引:31
作者
MEYER, A
机构
[1] Institute of Mechanics, Academy of Science GDR, Chemnitz, PSF 408-DDR-9010, P.O. Box 408, Germany (Democratic Republic
关键词
AMS Subject Classification: AMS(MOS) 65N20; 65F10; CR:; G.1.3; G.1.8; Domain decomposition method; finite element equations; iterative solvers;
D O I
10.1007/BF02250634
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe a preconditioned conjugate gradient solution strategy for a multiprocessor system with message passing architecture. The preconditioner combines two techniques, a Schurcomplement preconditioning over "coupling boundaries" between the subdomains and an arbitrary choice of classic preconditioning for the inner degrees of freedom on each subdomain. All computational work on the single subdomains is carried out in parallel by distributing the subdomain data over the processor network before starting the finite element solution process (including generating the element matrices and assemblying the local subdomain stiffness matrix). The resulting spectral condition number of the entire preconditioner is estimated. For the important example of choosing MIC(0)-*-preconditioning on the subdomains, the condition number obtained is essentially the product of the two condition numbers involved. © 1990 Springer-Verlag.
引用
收藏
页码:217 / 234
页数:18
相关论文
共 11 条
[1]  
AXELSSON O, 1972, BIT, V13, P443, DOI 10.1007/BF01932955
[2]  
BOERGERS C, 1989, NUMER MATH, V55, P123
[3]  
BRAMBLE JH, 1986, MATH COMPUT, V47, P103, DOI 10.1090/S0025-5718-1986-0842125-3
[4]  
CHAN TF, 1985, YALEUDCSRR414 YAL U
[6]   COMPLEXITY OF PARALLEL IMPLEMENTATION OF DOMAIN DECOMPOSITION TECHNIQUES FOR ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
GROPP, WD ;
KEYES, DE .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (02) :312-326
[7]  
GUSTAFSSON I, 7902R CHALM U TECHN
[8]   ITERATIVE SOLUTION METHOD FOR LINEAR-SYSTEMS OF WHICH COEFFICIENT MATRIX IS A SYMMETRIC M-MATRIX [J].
MEIJERINK, JA ;
VANDERVORST, HA .
MATHEMATICS OF COMPUTATION, 1977, 31 (137) :148-162
[9]  
MEYER A, 1988, 34 TU K MARX STADT R
[10]   TOPOLOGICAL PROPERTIES OF HYPERCUBES [J].
SAAD, Y ;
SCHULTZ, MH .
IEEE TRANSACTIONS ON COMPUTERS, 1988, 37 (07) :867-872