PERIODIC-SOLUTIONS OF A PLANAR DELAY EQUATION

被引:48
作者
TABOAS, P [1 ]
机构
[1] UNIV SAO PAULO,INST CIENCIAS MATEMAT SAO CARLOS,BR-13560 SAO CARLOS,SP,BRAZIL
关键词
D O I
10.1017/S0308210500031395
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the planar delay differential equation x′(t) = −x(t) + αF(x(t − 1)), for α>0. An existence theorem for nonconstant periodic solutions is achieved for a certain class of maps F, for α > some α0. Besides a condition of nondegeneracy at x = 0, we assume F is bounded and satisfies a kind of planar negative feedback condition. The nonconstant periodic solutions are associated with nontrivial fixed points of a certain operator defined by the flow in the plase space C([−l, 0], R2). In our approach, the existence of such fixed points depends on the ejectivity of O∈ C([−1, 0], R2) with respect to that operator. Relaxing the boundedness condition on F, we show the existence of a sequence of values of α, α0 >α1 or, >…, where a Hopf bifurcation occurs. © 1990, Royal Society of Edinburgh. All rights reserved.
引用
收藏
页码:85 / 101
页数:17
相关论文
共 25 条
[1]  
Bellman R., 1963, DIFFERENTIAL DIFFERE, DOI 10.1063/1.3050672
[2]   A FURTHER GENERALIZATION OF SCHAUDER FIXED POINT THEOREM [J].
BROWDER, FE .
DUKE MATHEMATICAL JOURNAL, 1965, 32 (04) :575-&
[3]   PERIODIC-SOLUTIONS OF AUTONOMOUS EQUATIONS [J].
CHOW, SN ;
HALE, JK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (03) :495-506
[4]   EXISTENCE OF PERIODIC-SOLUTIONS OF AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
CHOW, SN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :350-378
[5]  
CUNNINGHAM WJ, 1954, P NATL ACAD SCI USA, V40, P709
[6]  
FIEDLER B, IN PRESS CONNECTIONS
[7]   A PERIODICITY THEOREM FOR AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
GRAFTON, RB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 6 (01) :87-&
[8]  
HADELER K, 1979, FUNCTIONAL DIFFERENT
[9]   PERIODIC-SOLUTIONS OF DIFFERENCE-DIFFERENTIAL EQUATIONS [J].
HADELER, KP ;
TOMIUK, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 65 (01) :87-95
[10]  
HALE J, 1977, THEORY FUNCTIONAL DI