POINTS AND TRIANGLES IN THE PLANE AND HALVING PLANES IN SPACE

被引:36
作者
ARONOV, B
CHAZELLE, B
EDELSBRUNNER, H
GUIBAS, LJ
SHARIR, M
WENGER, R
机构
[1] PRINCETON UNIV,DEPT COMP SCI,PRINCETON,NJ 08544
[2] UNIV ILLINOIS,DEPT COMP SCI,URBANA,IL 61801
[3] DEC SYST RES CTR,PALO ALTO,CA 94301
[4] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[5] TEL AVIV UNIV,SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1007/BF02574700
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that for any set S of n points in the plane and n3-alpha triangles spanned by the points in S there exists a point (not necessarily in S) contained in at least n3-3-alpha/(c log5 n) of the triangles. This implies that any set of n points in three-dimensional space defines at most cube-root (c/2)n8/3 log5/3 n halving planes.
引用
收藏
页码:435 / 442
页数:8
相关论文
共 12 条
[1]   THE NUMBER OF SMALL SEMISPACES OF A FINITE-SET OF POINTS IN THE PLANE [J].
ALON, N ;
GYORI, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (01) :154-157
[2]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[3]   POWER DIAGRAMS - PROPERTIES, ALGORITHMS AND APPLICATIONS [J].
AURENHAMMER, F .
SIAM JOURNAL ON COMPUTING, 1987, 16 (01) :78-96
[4]   A GENERALIZATION OF CARATHEODORYS THEOREM [J].
BARANY, I .
DISCRETE MATHEMATICS, 1982, 40 (2-3) :141-152
[5]  
BARANY I, 1989, 5TH P ANN S COMP GEO, P140
[6]  
Boros E., 1984, GEOM DEDICATA, V17, P69, DOI DOI 10.1007/BF00181519
[7]  
CHAZELLE B, 1990, 6TH P ANN S COMP GEO, P116
[8]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[9]   ON THE NUMBER OF LINE SEPARATIONS OF A FINITE-SET IN THE PLANE [J].
EDELSBRUNNER, H ;
WELZL, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 38 (01) :15-29
[10]  
ERDOS P, 1973, SURVEY COMBINATORIAL, P139