FINITE METRIC-SPACES NEEDING HIGH DIMENSION FOR LIPSCHITZ EMBEDDINGS IN BANACH-SPACES

被引:10
作者
ARIASDEREYNA, J
RODRIGUEZPIAZZA, L
机构
[1] Departmento de Análisis Matemático, Universidad de Sevilla, Sevilla, 41080
关键词
D O I
10.1007/BF02764804
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a sequence of metric spaces (M(n)) with card M(n) = n satisfying that for every c < 2, there exists a real number a(c) > 0 such that, if the Lipschitz distance from M(n) to a subset of a Banach space E is less than c, then dim(E) greater-than-or-equal-to a(c)n. We also prove several results about embeddings of metric spaces whose non-zero distance values are in the interval [1,2].
引用
收藏
页码:103 / 111
页数:9
相关论文
共 4 条
[1]   ON LIPSCHITZ EMBEDDING OF FINITE METRIC-SPACES IN HILBERT-SPACE [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 52 (1-2) :46-52
[2]  
Garnaev A. Yu., 1984, DOKL AKAD NAUK SSSR+, V30, P200
[3]  
Johnson W. B., 1984, CONT MATH, V26, P189, DOI DOI 10.1090/CONM/026/737400
[4]  
Johnson WB, 1987, LECT NOTES MATH, V1267, P177