RECURSION METHOD OF A LINEAR OPERATOR INVERSION .2.

被引:8
作者
ZNOJIL, M [1 ]
机构
[1] ACAD SCI USSR,INST NUCL RES,MOSCOW V-71,USSR
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1978年 / 11卷 / 08期
关键词
D O I
10.1088/0305-4470/11/8/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For pt.I see ibid., vol.18, p.717 (1977). In the second part of the present series the author describes the sparse-matrix version of the Born series generalisation.
引用
收藏
页码:1501 / 1508
页数:8
相关论文
共 5 条
[1]  
BARANGER M, 1969, P INT SCH PHYSICS EN
[2]   INVERSE OF A LINEAR OPERATOR [J].
HAYDOCK, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1974, 7 (17) :2120-2124
[3]  
Wilkinson J. H., 1965, ALGEBRAIC EIGENVALUE
[4]   RECURSION METHOD OF A LINEAR OPERATOR INVERSION [J].
ZNOJIL, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (01) :1-10
[5]   GENERALIZED METHOD OF A RESOLVENT OPERATOR EXPANSION [J].
ZNOJIL, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (04) :717-719